当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stationary dislocation motion at stresses significantly below the Peierls stress: Example of shuffle screw and 60∘ dislocations in silicon
Acta Materialia ( IF 9.4 ) Pub Date : 2021-01-06 , DOI: 10.1016/j.actamat.2021.116623
Hao Chen , Valery I. Levitas , Liming Xiong , Xiancheng Zhang

The stationary motion of shuffle screw and 60 dislocations in silicon when the applied shear, τap, is much below the static Peierls stress,τpmax, is proved and quantified through a series of molecular dynamics (MD) simulations at 1 K and 300 K, and also by solving the continuum-level equation of motion, which uses the atomistic information as inputs. The concept of a dynamic Peierls stress, τpd, below which a stationary dislocation motion can never be possible, is built upon a firm atomistic foundation. In MD simulations at 1 K, the dynamic Peierls stress is found to be 0.33GPa for a shuffle screw dislocation and 0.21GPa for a shuffle 60 dislocation, versus τpmax of 1.71GPa and 1.46GPa, respectively. The critical initial velocity v0c(τap) above which a dislocation can maintain a stationary motion at τpd<τap<τpmax is found. The velocity dependence of the dissipation stress associated with the dislocation motion is then characterized and informed into the equation of motion of dislocation at the continuum level. A stationary dislocation motion below τpmax is attributed to: (i) the periodic lattice resistance smaller than τpmax almost everywhere; and (ii) the change of a dislocation’s kinetic energy, which acts in a way equivalent to reducing τpmax. The results obtained here open up the possibilities of a dynamic intensification of plastic flow and defects accumulations, and consequently, the strain-induced phase transformations. Similar approaches can be applicable to partial dislocations, twin and phase interfaces.



中文翻译:

应力远低于Peierls应力时的静态位错运动:混洗螺钉和 60 硅中的位错

随机播放的螺丝和 60 施加剪切力时硅中的位错, τ一种p 远低于静态的Peierls应力,τp最高通过一系列在1 K和300 K上的分子动力学(MD)模拟,以及通过求解使用原子信息作为输入的连续水平运动方程,对量子力学进行了证明和量化。动态Peierls压力概念τpd在此之下,固定的位错运动永远不可能发生,是建立在牢固的原子基础上的。在1 K的MD模拟中,发现动态Peierls应力为0.33GP一种 进行洗牌螺钉脱位并 0.21GP一种 洗牌 60 脱位,与 τp最高1.71GP一种1.46GP一种分别。临界初始速度v0Cτ一种p 高于此位错可以在 τpd<τ一种p<τp最高被发现。然后,表征与位错运动相关的耗散应力的速度相关性,并将其告知连续级的位错运动方程。下方的平稳脱位运动τp最高 归因于:(i)周期性晶格电阻小于 τp最高几乎到处 (ii)位错动能的变化,其作用等同于减少τp最高。此处获得的结果为动态增强塑性流动和缺陷累积以及因此引起的应变诱发的相变提供了可能性。类似的方法可以适用于部分位错,孪晶和相界面。

更新日期:2021-01-18
down
wechat
bug