当前位置: X-MOL 学术Plasmonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of Absorption and Effectiveness of a Perovskite Thin-Film Solar Cell Embedded with Gold Nanospheres
Plasmonics ( IF 3 ) Pub Date : 2021-01-06 , DOI: 10.1007/s11468-020-01341-1
Afsaneh Asgariyan Tabrizi , Hamed Saghaei , Mohammad Amin Mehranpour , Mehdi Jahangiri

This paper proposes a novel design of plasmonic perovskite solar cell (PSC). It consists of an anti-reflective glass of fluorine-doped tin oxide (FTO), a compact buffer layer of n-type titanium dioxide (TiO2), an absorbing thin-film layer of perovskite (MAPbI3) integrated with gold (Au) nanospheres, a layer of p-type doped spiro-OMeTAD, and a layer of the cathode on aluminum (Al). This multilayer design’s primary purpose is to allow the light to enter the PSC with the minimum reflection and trap it in the active layer due to the presence of Au nanospheres. In this layer, the higher efficiency of PSC is achieved by localized surface plasmon resonances (LSPRs) in the wavelength range from 300 to 1100 nm. A reflective Al layer is used at the bottom of the device to reflect the light into the upper layers to considerably enhance the PSC absorption. The three-dimensional finite-difference time-domain method was conducted to find the best solution to Maxwell’s equations so that the best thickness and radius can be selected for each layer and Au nanospheres, respectively. Proper physical dimensions and Au nanospheres played a significant role in numerically indicating that the proposed structures are 60% more absorbent than the other conventional PSCs. In-house simulation software is used to approximate the solar cell by applying the finite element method to develop solutions for the drift–diffusion and Poisson’s equations. The examinations of the previous studies revealed that the current study is the first study that has simulated the real model of Auger recombination in perovskite. The results indicated that the proposed PSC embedded with Au nanospheres has the following properties: the built-in potential of 3.16 V, short-circuit current of 27.97 mA/cm2, the open-circuit voltage of 1 V, maximum power of 24.84 mW/cm2, fill-factor of 0.88, the conduction band of 3 eV, electron quasi-Fermi level of 2.5 eV, the hole quasi-Fermi level of 0.6 eV, and efficiency of 24.84%. Finally, the suggested PSC has performed 62% more efficient than conventional PSCs.



中文翻译:

嵌入金纳米球的钙钛矿薄膜太阳能电池吸收和功效的增强

本文提出了一种新颖的等离子钙钛矿太阳能电池(PSC)设计。它由掺氟氧化锡(FTO)的抗反射玻璃,紧凑的n型二氧化钛(TiO 2)缓冲层,钙钛矿的吸收性薄膜层(MAPbI 3)组成。)与金(Au)纳米球集成,一层p型掺杂的螺-OMeTAD,以及一层在铝(Al)上的阴极。这种多层设计的主要目的是使光以最小的反射率进入PSC,并由于存在Au纳米球而将其捕获在有源层中。在这一层中,通过在300至1100 nm波长范围内的局部表面等离子体共振(LSPR),可以实现更高的PSC效率。器件底部使用反射铝层将光反射到上层中,从而大大增强了PSC的吸收。进行了三维时域有限差分法,以求出麦克斯韦方程组的最佳解,从而可以分别为每一层和金纳米球选择最佳的厚度和半径。适当的物理尺寸和金纳米球在数字上起着重要作用,表明所提出的结构比其他传统PSC的吸收性高60%。内部仿真软件通过应用有限元方法来开发漂移扩散和泊松方程的解,从而近似于太阳能电池。对先前研究的检查表明,当前研究是第一个模拟钙钛矿中俄歇重组的真实模型的研究。结果表明,所提出的嵌入金纳米球的PSC具有以下特性:内置电势为3.16 V,短路电流为27.97 mA / cm 内部仿真软件通过应用有限元方法来开发漂移扩散和泊松方程的解,从而近似于太阳能电池。对先前研究的检查表明,当前研究是第一个模拟钙钛矿中俄歇重组的真实模型的研究。结果表明,所提出的嵌入金纳米球的PSC具有以下特性:内置电势为3.16 V,短路电流为27.97 mA / cm 内部仿真软件通过应用有限元方法来开发漂移扩散和泊松方程的解,从而近似于太阳能电池。对先前研究的检查表明,当前研究是第一个模拟钙钛矿中俄歇重组的真实模型的研究。结果表明,所提出的嵌入金纳米球的PSC具有以下特性:内置电势为3.16 V,短路电流为27.97 mA / cm2,开路电压1 V,最大功率24.84 mW / cm 2,填充系数0.88,导带3 eV,电子准费米能级为2.5 eV,空穴准费米能级为0.6 eV,效率为24.84%。最后,建议的PSC的效率比传统PSC高62%。

更新日期:2021-01-06
down
wechat
bug