当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced thermal and mechanical performance of polycrystalline diamond compact by introducing polycrystalline cubic boron nitride at the grain boundaries
International Journal of Refractory Metals & Hard Materials ( IF 3.6 ) Pub Date : 2021-01-05 , DOI: 10.1016/j.ijrmhm.2020.105468
Zhaoran Chen , Dejiang Ma , Shanmin Wang , Pinwen Zhu , Qiang Tao , Baochang Liu

Ti-coated diamond and cBN with TiCN as the binder were used to fabricate the TDBN-TiCN series PDC with improved heat resistance, wear resistance and impact toughness by a China-type cubic high-pressure apparatus (5.5–6.5 GPa, 1450–1650 °C) for drilling. Under high temperature and high pressure conditions, the Co in the cemented carbide substrate penetrated into the PCD layer and the binder TiCN to form a metal-ceramic binder system. It can promote the formation of polycrystalline cubic boron nitride (PcBN) from cubic boron nitride particles at the grain boundaries, and promote the TDBN-TiCN series PDC to have the performance of PCD and PcBN. Compared with the TDBN series PDC developed by our former research, the wear resistance of TDBN-TiCN series PDC increased by 17% and the impact toughness increased by 26%. In the TDBN-TiCN series PDC, some heat resistant phases, such as PcBN, TiB2 and TiN, were formed so as to enhance the initial graphitization and oxidizing temperatures to 958 °C, which was 8 °C higher than the TDBN series PDC (950 °C) and 178 °C higher than conventional PDC (780 °C).

更新日期:2021-01-18
down
wechat
bug