当前位置: X-MOL 学术ACM Trans. Embed. Comput. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical Program Power Characterization for Battery Depletion-time Estimation
ACM Transactions on Embedded Computing Systems ( IF 2 ) Pub Date : 2021-01-04 , DOI: 10.1145/3421511
Mahdi Mohammadpour Fard 1 , Mahmood Hasanloo 1 , Mehdi Kargahi 2
Affiliation  

Appropriate battery selection is a major design decision regarding the fast growth of battery-operated devices like space rovers, wireless sensor network nodes, rescue robots, and so on. Many such systems are mission critical, where estimation of the battery depletion time has an important role in the design efficiency with regard to the mission time. Accurate characterization of the system power usage pattern is essential for such an estimation. The following complexities exist: (1) The system behavior changes during interaction with the physical world, (2) the power consumption varies as the runtime progresses, (3) the total delivered battery charge has non-linear dependency on the power variability, and (4) design-time exhaustive study about runtime execution paths is almost impossible. This article presents an analytical method to first characterize the power variability of a given embedded program modeled by a directed acyclic graph, concerning the first and the second complexities. To include the third complexity, however, the concept of Worst-case Power Consumption Trace (WPCT) is proposed toward the worst-case scenario in terms of charge depletion for a given battery. A polynomial algorithm is also presented to construct WPCT and use it to estimate a tight lower bound for the system energy depletion time, i.e., its failure time, avoiding an exhaustive study. Comparisons between the analytical and simulation results reveal less than 3.4% of error in the bound estimations for the considered setups.

中文翻译:

用于电池耗尽时间估计的分析程序功率表征

对于太空漫游车、无线传感器网络节点、救援机器人等电池供电设备的快速增长,适当的电池选择是一项主要的设计决策。许多这样的系统是关键任务,其中电池耗尽时间的估计在与任务时间有关的设计效率中具有重要作用。系统功率使用模式的准确表征对于此类估计至关重要。存在以下复杂性:(1) 系统行为在与物理世界交互过程中发生变化,(2) 功耗随着运行时间的推移而变化,(3) 提供的总电池电量对功率变化具有非线性依赖性,以及(4) 关于运行时执行路径的设计时详尽研究几乎是不可能的。本文提出了一种分析方法,以首先表征由有向无环图建模的给定嵌入式程序的功率可变性,涉及第一个和第二个复杂性。然而,为了包括第三个复杂性,最坏情况功耗跟踪 (WPCT) 的概念是针对给定电池电量耗尽的最坏情况提出的。还提出了一种多项式算法来构造WPCT,并用它来估计系统能量耗尽时间的严格下限,即它的故障时间,避免了详尽的研究。分析和模拟结果之间的比较表明,在所考虑的设置的边界估计中,误差小于 3.4%。关于第一个和第二个复杂性。然而,为了包括第三个复杂性,最坏情况功耗跟踪 (WPCT) 的概念是针对给定电池电量耗尽的最坏情况提出的。还提出了一种多项式算法来构造WPCT,并用它来估计系统能量耗尽时间的严格下限,即它的故障时间,避免了详尽的研究。分析和模拟结果之间的比较表明,在所考虑的设置的边界估计中,误差小于 3.4%。关于第一个和第二个复杂性。然而,为了包括第三个复杂性,最坏情况功耗跟踪 (WPCT) 的概念是针对给定电池电量耗尽的最坏情况提出的。还提出了一种多项式算法来构造WPCT,并用它来估计系统能量耗尽时间的严格下限,即它的故障时间,避免了详尽的研究。分析和模拟结果之间的比较表明,在所考虑的设置的边界估计中,误差小于 3.4%。还提出了一种多项式算法来构造WPCT,并用它来估计系统能量耗尽时间的严格下限,即它的故障时间,避免了详尽的研究。分析和模拟结果之间的比较表明,在所考虑的设置的边界估计中,误差小于 3.4%。还提出了一种多项式算法来构造WPCT,并用它来估计系统能量耗尽时间的严格下限,即它的故障时间,避免了详尽的研究。分析和模拟结果之间的比较表明,在所考虑的设置的边界估计中,误差小于 3.4%。
更新日期:2021-01-04
down
wechat
bug