当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robot-aided fN∙m torque sensing within an ultrawide dynamic range
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2021-01-04 , DOI: 10.1038/s41378-020-00231-0
Shudong Wang 1, 2 , Xueyong Wei 1 , Haojian Lu 2 , Ziming Ren 1 , Zhuangde Jiang 1 , Juan Ren 1, 3 , Zhan Yang 4 , Lining Sun 4 , Wanfeng Shang 5 , Xinyu Wu 5 , Yajing Shen 2, 6
Affiliation  

In situ scanning electron microscope (SEM) characterization have enabled the stretching, compression, and bending of micro/nanomaterials and have greatly expanded our understanding of small-scale phenomena. However, as one of the fundamental approaches for material analytics, torsion tests at a small scale remain a major challenge due to the lack of an ultrahigh precise torque sensor and the delicate sample assembly strategy. Herein, we present a microelectromechanical resonant torque sensor with an ultrahigh resolution of up to 4.78 fN∙m within an ultrawide dynamic range of 123 dB. Moreover, we propose a nanorobotic system to realize the precise assembly of microscale specimens with nanoscale positioning accuracy and to conduct repeatable in situ pure torsion tests for the first time. As a demonstration, we characterized the mechanical properties of Si microbeams through torsion tests and found that these microbeams were five-fold stronger than their bulk counterparts. The proposed torsion characterization system pushes the limit of mechanical torsion tests, overcomes the deficiencies in current in situ characterization techniques, and expands our knowledge regarding the behavior of micro/nanomaterials at various loads, which is expected to have significant implications for the eventual development and implementation of materials science.



中文翻译:

超宽动态范围内的机器人辅助 fN∙m 扭矩传感

原位扫描电子显微镜 (SEM) 表征使微/纳米材料的拉伸、压缩和弯曲成为可能,并极大地扩展了我们对小尺度现象的理解。然而,作为材料分析的基本方法之一,由于缺乏超高精度扭矩传感器和精密的样品组装策略,小规模的扭转测试仍然是一项重大挑战。在此,我们提出了一种微机电谐振扭矩传感器,在 123 dB 的超宽动态范围内具有高达 4.78 fN∙m 的超高分辨率。此外,我们提出了一种纳米机器人系统,以实现具有纳米级定位精度的微型样品的精确组装,并首次进行可重复的原位纯扭转测试。作为示范,我们通过扭转试验表征了 Si 微梁的机械性能,发现这些微梁比它们的大块对应物强五倍。所提出的扭转表征系统突破了机械扭转测试的极限,克服了当前原位表征技术的不足,并扩展了我们对微/纳米材料在各种负载下的行为的认识,这有望对最终的发展和研究产生重大影响。材料科学的实施。

更新日期:2021-01-04
down
wechat
bug