当前位置: X-MOL 学术J. Radioanal. Nucl. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2D peak fitting for the analysis of radioxenon beta gamma spectra
Journal of Radioanalytical and Nuclear Chemistry ( IF 1.6 ) Pub Date : 2021-01-04 , DOI: 10.1007/s10967-020-07518-6
Jefferson Sesler , James Scoville , Thienbao Carpency , Jordan Armstrong , Robert Hall

Atmospheric traces of radioactive xenon, in particular 131mXe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{131m}{\text {Xe}}$$\end{document}, 133Xe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{133}{\text {Xe}}$$\end{document}, 133mXe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{133m}{\text {Xe}}$$\end{document} and 135Xe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{135}{\text {Xe}}$$\end{document}, can provide “smoking gun” evidence to classify underground nuclear fission reactions. Current software used to quantify isomer concentrations relies on a Region of Interest (ROI) method to sort beta-gamma coincidence counts. This experiences errors when classifying nuclides, especially with metastable nuclides, due to the difficulty of deconvoluting overlapping ROIs and accounting for shifts in detector calibration over time. To address this uncertainty, our technique mathematically models the distinctive peaks in an isomer’s beta-gamma spectrum. The function representations are then fitted to measured spectra to determine the concentrations of the primary isomers in the sample. From this proof-of-concept, we hope to create a more precise and accurate system to detect nuclear fission reactions.

中文翻译:

用于分析放射性氙 β γ 谱的 2D 峰拟合

133mXe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin} {-69pt} \begin{document}$$^{133m}{\text {Xe}}$$\end{document} 和 135Xe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \ usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{135}{\text {Xe }}$$\end{document},可以提供对地下核裂变反应进行分类的“确凿证据”。当前用于量化异构体浓度的软件依赖于感兴趣区域 (ROI) 方法来对 beta-gamma 巧合计数进行排序。这在对核素进行分类时会出现错误,尤其是对于亚稳态核素,由于难以对重叠的 ROI 进行解卷积并考虑探测器校准随时间的变化。为了解决这种不确定性,我们的技术对异构体 β-γ 光谱中的独特峰进行了数学建模。然后将函数表示拟合到测量光谱以确定样品中主要异构体的浓度。通过这个概念验证,我们希望创建一个更精确和准确的系统来检测核裂变反应。然后将函数表示拟合到测量光谱以确定样品中主要异构体的浓度。通过这个概念验证,我们希望创建一个更精确和准确的系统来检测核裂变反应。然后将函数表示拟合到测量光谱以确定样品中主要异构体的浓度。通过这个概念验证,我们希望创建一个更精确和准确的系统来检测核裂变反应。
更新日期:2021-01-04
down
wechat
bug