当前位置: X-MOL 学术J. Mech. Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2D finite-element modeling of 3D blade structures with axisymmetric and non-axisymmetric shapes
Journal of Mechanical Science and Technology ( IF 1.6 ) Pub Date : 2021-01-04 , DOI: 10.1007/s12206-020-1119-y
Hee Won Seo , Jeong Sam Han

Prediction of the clearance between the components of a rotor and casing of a gas turbine is generally based on the two-dimensional (2D) finite-element analysis of the overall layout, the three-dimensional (3D) finite-element analysis of the local parts, and the deformation of the gas turbine components caused by other, unimportant 3D effects, such as cold-build clearances and ovalization. Using this, the variation of clearance, the minimum clearance, and the contact evaluation between the components with respect to the operation time are evaluated. Detailed 3D modeling of the overall shape for transient thermal-structural analysis for the prediction of clearances between components under the operating conditions of gas turbines with complex components, including both axisymmetric and non-axisymmetric shapes, is not economical in terms of computational time and cost. To address this problem, it is efficient to perform finite-element analysis by means of 2D modeling based on the crosssectional information of the gas turbine components. At this moment, the 2D finite-element modeling for the axisymmetric and non-axisymmetric structures of the gas turbine is important for predicting the correct and accurate deformation. In this paper, we show that 2D modeling can obtain results similar to those of 3D finite-element analysis for the original shape. The proposed 2D finite-element modeling method for rotor and support of a gas turbine that includes both axisymmetric and non-axisymmetric shapes will enable rapid and effective prediction of the components' behavior.



中文翻译:

具有轴对称和非轴对称形状的3D叶片结构的2D有限元建模

燃气轮机的转子和壳体之间的间隙的预测通常基于整体布局的二维(2D)有限元分析,局部的三维(3D)有限元分析零件,以及其他不重要的3D效果(例如冷装配间隙和椭圆化)引起的燃气轮机部件变形。使用此方法,可以评估间隙的变化,最小间隙以及组件之间相对于运行时间的接触评估。用于瞬态热结构分析的整体形状的详细3D建模,用于预测具有复杂部件的燃气轮机在工况下部件之间的间隙,包括轴对称和非轴对称形状,在计算时间和成本方面不经济。为了解决这个问题,有效的是基于燃气轮机部件的横截面信息通过2D建模进行有限元分析。目前,燃气轮机轴对称和非轴对称结构的二维有限元建模对于预测正确和准确的变形非常重要。在本文中,我们表明2D建模可以获得的结果与原始形状的3D有限元分析相似。对于包括轴对称和非轴对称形状的燃气轮机转子和支撑件,提出的二维有限元建模方法将能够快速有效地预测零部件的性能。根据燃气轮机部件的横截面信息,通过2D建模进行有限元分析非常有效。目前,燃气轮机轴对称和非轴对称结构的二维有限元建模对于预测正确和准确的变形非常重要。在本文中,我们表明2D建模可以获得的结果与原始形状的3D有限元分析相似。对于包括轴对称和非轴对称形状的燃气轮机转子和支撑件,提出的二维有限元建模方法将能够快速有效地预测零部件的性能。根据燃气轮机部件的横截面信息,通过2D建模进行有限元分析非常有效。目前,燃气轮机轴对称和非轴对称结构的二维有限元建模对于预测正确和准确的变形非常重要。在本文中,我们表明2D建模可以获得的结果与原始形状的3D有限元分析相似。对于包括轴对称和非轴对称形状的燃气轮机转子和支撑件,提出的二维有限元建模方法将能够快速有效地预测零部件的性能。燃气轮机轴对称和非轴对称结构的二维有限元建模对于预测正确和准确的变形非常重要。在本文中,我们表明2D建模可以获得的结果与原始形状的3D有限元分析相似。对于包括轴对称和非轴对称形状的燃气轮机转子和支撑件,提出的二维有限元建模方法将能够快速有效地预测零部件的性能。燃气轮机轴对称和非轴对称结构的二维有限元建模对于预测正确和准确的变形非常重要。在本文中,我们表明2D建模可以获得的结果与原始形状的3D有限元分析相似。对于包括轴对称和非轴对称形状的燃气轮机转子和支撑件,提出的二维有限元建模方法将能够快速有效地预测零部件的性能。

更新日期:2021-01-04
down
wechat
bug