当前位置: X-MOL 学术Arch. Rational Mech. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Renormalized Energy Between Vortices in Some Ginzburg–Landau Models on 2-Dimensional Riemannian Manifolds
Archive for Rational Mechanics and Analysis ( IF 2.5 ) Pub Date : 2021-01-04 , DOI: 10.1007/s00205-020-01598-0
R. Ignat , R. L. Jerrard

We study a variational Ginzburg–Landau type model depending on a small parameter $$\varepsilon >0$$ ε > 0 for (tangent) vector fields on a 2-dimensional Riemannian manifold S . As $$\varepsilon \rightarrow 0$$ ε → 0 , these vector fields tend to have unit length so they generate singular points, called vortices, of a (non-zero) index if the genus $${\mathfrak {g}}$$ g of S is different than 1. Our first main result concerns the characterization of canonical harmonic unit vector fields with prescribed singular points and indices. The novelty of this classification involves flux integrals constrained to a particular vorticity-dependent lattice in the $$2{\mathfrak {g}}$$ 2 g -dimensional space of harmonic 1-forms on S if $${\mathfrak {g}}\geqq 1$$ g ≧ 1 . Our second main result determines the interaction energy (called renormalized energy) between vortex points as a $$\Gamma $$ Γ -limit (at the second order) as $$\varepsilon \rightarrow 0$$ ε → 0 . The renormalized energy governing the optimal location of vortices depends on the Gauss curvature of S as well as on the quantized flux. The coupling between flux quantization constraints and vorticity, and its impact on the renormalized energy, are new phenomena in the theory of Ginzburg–Landau type models. We also extend this study to two other (extrinsic) models for embedded hypersurfaces $$S\subset {{\mathbb {R}}}^3$$ S ⊂ R 3 , in particular, to a physical model for non-tangent maps to S coming from micromagnetics.

中文翻译:

二维黎曼流形上某些 Ginzburg-Landau 模型中涡间的重整化能量

我们研究了一个变分 Ginzburg-Landau 类型模型,它取决于二维黎曼流形 S 上的(切线)矢量场的小参数 $$\varepsilon >0$$ ε > 0。由于 $$\varepsilon \rightarrow 0$$ ε → 0 ,这些向量场往往具有单位长度,因此如果属 $${\mathfrak {g} S 的 }$$ g 不同于 1。我们的第一个主要结果涉及具有指定奇异点和指数的规范调和单位矢量场的表征。这种分类的新颖之处涉及到 S 上谐波 1-形式的 $$2{\mathfrak {g}}$$ 2 g 维空间中的通量积分被约束到特定的涡度相关晶格,如果 $${\mathfrak {g} }\geqq 1$$ g ≧ 1 . 我们的第二个主要结果将涡点之间的相互作用能量(称为重整化能量)确定为 $$\Gamma $$ Γ -limit(在二阶)为 $$\varepsilon \rightarrow 0$$ ε → 0 。控制涡旋最佳位置的重整化能量取决于 S 的高斯曲率以及量子化通量。通量量化约束和涡度之间的耦合及其对重整化能量的影响,是 Ginzburg-Landau 型模型理论中的新现象。我们还将这项研究扩展到嵌入超曲面 $$S\subset {{\mathbb {R}}}^3$$ S ⊂ R 3 的其他两个(外在)模型,特别是非切线映射的物理模型到 S 来自微磁。控制涡旋最佳位置的重整化能量取决于 S 的高斯曲率以及量子化通量。通量量化约束和涡度之间的耦合及其对重整化能量的影响,是 Ginzburg-Landau 型模型理论中的新现象。我们还将这项研究扩展到嵌入超曲面 $$S\subset {{\mathbb {R}}}^3$$ S ⊂ R 3 的其他两个(外在)模型,特别是非切线映射的物理模型到 S 来自微磁。控制涡旋最佳位置的重整化能量取决于 S 的高斯曲率以及量子化通量。通量量化约束和涡度之间的耦合及其对重整化能量的影响,是 Ginzburg-Landau 型模型理论中的新现象。我们还将这项研究扩展到嵌入超曲面的另外两个(外在)模型 $$S\subset {{\mathbb {R}}}^3$$ S ⊂ R 3 ,特别是非切线映射的物理模型到 S 来自微磁。
更新日期:2021-01-04
down
wechat
bug