当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ drilling and milling of thin sheet using microelectrical discharge machining
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 2.2 ) Pub Date : 2021-01-03 , DOI: 10.1007/s40430-020-02749-w
Siddhartha Kar , Promod Kumar Patowari

The present study investigates fabrication of microrod using block electrical discharge grinding process and performs in situ drilling and milling of thin sheets using the fabricated rods by the microelectrical discharge machining process. The microrods are fabricated at a wide range of discharge energy (DE) by varying voltage and capacitance, and their effect on machining time (MT), material removal rate, average diameter and standard deviation in diameter (SDD) are evaluated. To get the benefit of both higher efficiency as well as dimensional accuracy, a technique of variable energy setting is coined, wherein higher DE is applied initially to increase efficiency followed by lower DE to improve dimensional accuracy and precision. The fabricated microrods are then used as tools for in situ microelectrical discharge drilling (µED-drilling) and microelectrical discharge milling (µED-milling) on brass and titanium sheet. In µED-drilling, MT and tool wear (TW) of brass is lower as compared to titanium, whereas overcut of brass is higher than titanium. ‘To and fro’ technique is used to compensate the TW in µED-milling and to achieve dimensional accuracy. The technique is successful in achieving fairly straight microslot in brass with SDD of 17 µm as compared to titanium with SDD of 113.50 µm.



中文翻译:

利用微放电加工对薄板进行原位钻孔和铣削

本研究调查了使用块状放电磨削工艺制造微棒,并通过微电火花加工工艺使用所制造的棒对薄板进行原位钻孔和铣削。通过改变电压和电容可以在很宽的放电能量(DE)范围内制造微棒,并评估它们对加工时间(MT),材料去除率,平均直径和直径标准偏差(SDD)的影响。为了获得更高效率和尺寸精度的好处,提出了一种可变能量设置的技术,其中首先采用较高的DE来提高效率,然后采用较低的DE来提高尺寸精度和精度。然后,将制成的微棒用作在黄铜和钛板上进行原位微电火花钻孔(µED-drilling)和微电火花铣削(µED-milling)的工具。在µED钻孔中,与钛相比,黄铜的MT和工具磨损(TW)较低,而黄铜的咬边率高于钛。“来回”技术用于补偿µED铣削中的TW并达到尺寸精度。与钛的SDD为113.50 µm相比,该技术成功地实现了SDD为17 µm的黄铜中相当直的微缝隙。“来回”技术用于补偿µED铣削中的TW并达到尺寸精度。与钛的SDD为113.50 µm相比,该技术成功地实现了SDD为17 µm的黄铜中相当直的微缝隙。“来回”技术用于补偿µED铣削中的TW并达到尺寸精度。与钛的SDD为113.50 µm相比,该技术成功地实现了SDD为17 µm的黄铜中相当直的微缝隙。

更新日期:2021-01-03
down
wechat
bug