当前位置: X-MOL 学术EPL › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensitivity to strains and defects for manipulating the conductivity of graphene
EPL ( IF 1.8 ) Pub Date : 2020-12-31 , DOI: 10.1209/0295-5075/132/48002
I. Yu. Sahalianov 1 , T. M. Radchenko 2 , V. A. Tatarenko 2 , G. Cuniberti 3, 4, 5
Affiliation  

Implementing the quantum-mechanical Kubo-Greenwood formalism for the numerical calculation of dc conductivity, we demonstrate that the electron transport properties of a graphene layer can be tailored through the combined effect of defects (point and line scatterers) and strains (uniaxial tension and shear), which are commonly present in a graphene sample due to the features of its growth procedure and when the sample is used in devices. Motivated by two experimental works (He X.et al. Appl. Phys. Lett., 104 (2014) 243108; 105 (2014) 083108), where authors did not observe the transport gap even at large (22.5% of tensile and 16.7% of shear) deformations, we explain possible reasons, emphasizing on graphene's strain and defect sensing. The strain- and defect-induced electron-hole asymmetry and anisotropy of conductivity, and its nonmonotony as a function of deformation suggest perspectives for the strain-defect engineering of electrotransport properties of graphene and related 2D materials.



中文翻译:

对应变和缺陷的敏感性,以控制石墨烯的电导率

实施量子力学Kubo-Greenwood形式主义来进行直流电导率的数值计算,我们证明了石墨烯层的电子传输特性可以通过缺陷(点和线散射体)和应变(单轴张力和剪切力)的组合效应来定制。 ),由于其生长过程的特征以及在设备中使用该样品时通常存在于石墨烯样品中。受两项实验工作启发(He X.等人Appl。Phys。Lett。,104(2014)243108; 105(2014)083108),即使在大变形(22.5%的拉伸和16.7%的剪切)变形下,作者也没有观察到传输间隙,我们在石墨烯的应变和缺陷感测上解释了可能的原因。应变和缺陷引起的电子空穴不对称性和导电性的各向异性,以及其非单调性随变形的变化,为石墨烯和相关2D材料的电传输性质的应变缺陷工程学提供了前景。

更新日期:2020-12-31
down
wechat
bug