当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flexible synthesis of high-purity plasmonic assemblies
Nano Research ( IF 9.9 ) Pub Date : 2020-10-17 , DOI: 10.1007/s12274-020-3084-2
Laurent Lermusiaux , Anum Nisar , Alison M. Funston

The self-assembly of nanoparticles has attracted a vast amount of attention due to the ability of the nanostructure to control light at the sub-wavelength scale, along with consequent strong electromagnetic field enhancement. However, most approaches developed for the formation of discrete assemblies are limited to a single and homogeneous system, and incorporation of larger or asymmetrical nanoparticles into assemblies with high purity remains a key challenge. Here, a simple and versatile approach to assemble nanoparticles of different sizes, shapes, and materials into various discrete homo- or hetero-structures using only two complementary deoxyribonucleic acid (DNA) strands is presented. First, surface functionalisation using DNA and alkyl-polyethylene glycol (PEG) enables transformation of as-synthesised nanoparticles into readily usable plasmonic building blocks for self-assembly. Optimisation of the DNA coverage enables the production of different assembly types, such as homo- and hetero-dimers, trimers and tetramers and core-satellite structures, which are produced in high purity using electrophoresis purification. The approach is extended from purely plasmonic structures to incorporate (luminescent) semiconductor nanoparticles for formation of hybrid assemblies. The deposited assemblies form a high yield of specific geometrical arrangements, attributed to the van der Waals attraction between particles. This method will enable the development of new complex colloidal nanoassemblies for biological and optical applications.



中文翻译:

灵活合成高纯度等离子体组件

纳米颗粒的自组装由于纳米结构具有控制亚波长范围的光的能力以及随之而来的强电磁场增强能力,因此引起了广泛的关注。但是,为形成离散组件而开发的大多数方法都限于单个均匀的系统,并且将较大或不对称的纳米粒子并入具有高纯度的组件中仍然是关键挑战。在这里,提出了一种简单通用的方法,仅使用两条互补的脱氧核糖核酸(DNA)链即可将不同大小,形状和材料的纳米粒子组装成各种离散的同质或异质结构。第一,使用DNA和烷基聚乙二醇(PEG)进行的表面功能化可将合成后的纳米颗粒转化为易于使用的等离激元构建基块,以实现自组装。DNA覆盖率的优化可以生产不同的组装类型,例如同型和异型二聚体,三聚体和四聚体以及卫星核心结构,这些都是通过电泳纯化以高纯度生产的。该方法从纯等离子体结构扩展到并入(发光)半导体纳米粒子,以形成混合组件。沉积的组件形成高产量的特定几何排列,这归因于粒子之间的范德华力吸引。这种方法将能够开发用于生物和光学应用的新型复杂胶体纳米组件。使用电泳纯化以高纯度生产的三聚体和四聚体以及卫星核心结构。该方法从纯等离子体结构扩展到并入(发光)半导体纳米粒子,以形成混合组件。沉积的组件形成高产量的特定几何排列,这归因于粒子之间的范德华力吸引。这种方法将能够开发用于生物和光学应用的新型复杂胶体纳米组件。使用电泳纯化以高纯度生产的三聚体和四聚体以及卫星核心结构。该方法从纯等离子体结构扩展到并入(发光)半导体纳米粒子,以形成混合组件。沉积的组件形成高产量的特定几何排列,这归因于粒子之间的范德华力吸引。这种方法将能够开发用于生物和光学应用的新型复杂胶体纳米组件。沉积的组件形成高产量的特定几何排列,这归因于粒子之间的范德华力吸引。这种方法将能够开发用于生物和光学应用的新型复杂胶体纳米组件。沉积的组件形成高产量的特定几何排列,这归因于粒子之间的范德华力吸引。这种方法将能够开发用于生物和光学应用的新型复杂胶体纳米组件。

更新日期:2020-10-17
down
wechat
bug