当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure and electrical properties of novel piezo-optrodes based on thin-film piezoelectric Aluminium Nitride for sensing
IEEE Transactions on Nanotechnology ( IF 2.4 ) Pub Date : 2021-01-01 , DOI: 10.1109/tnano.2020.3042234
Massimo Mariello , Francesco Guido , Luciana Algieri , Vincenzo Mariano Mastronardi , Antonio Qualtieri , Ferruccio Pisanello , Massimo De Vittorio

Thin-film piezoelectric materials are currently employed in micro- and nanodevices for energy harvesting and mechanical sensing. The deposition of these functional layers, however, is quite challenging onto non-rigid/non-flat substrates, such as optical fibers (OFs). Besides the recent novel applications of OFs as probes for biosensing and bioactuation, the possibility to combine them with piezoelectric thin films and metallic electrodes can pave the way for the employment of novel opto-electro-mechanical sensors (e.g., waveguides, optical phase modulators, tunable filters, energy harvesters or biosensors). In this work the deposition of a thin-film piezoelectric wurtzite-phase Aluminium Nitride (AlN), sandwiched between molybdenum (Mo) electrodes, on the curved lateral surface of an optical fiber with polymeric cladding, is reported for the first time, without the need of an orientation-promoting interlayer. The material surface properties and morphology are characterized by microscopy techniques. High orientation is demonstrated by SEM, PFM and X-ray diffraction analysis on a flat polymeric control, with a resulting piezoelectric coefficient (d33) of ∼5.4 pm/V, while the surface roughness Rms measured by AFM is 9 ÷ 16 nm. The output mechanical sensing capability of the resulting AlN-based piezo-optrode is investigated through mechanical buckling tests: the peak-to-peak voltage for weakly impulsive loads increases with increasing relative displacements (up to 30%), in the range of 20 ÷ 35 mV. Impedance spectroscopy frequency sweeps (10 kHz-1 MHz, 1 V) demonstrate a sensor capacitance of ∼8 pF, with an electrical Q factor as high as 150. The electrical response in the long-term period (two months) revealed good reliability and durability.

中文翻译:

基于薄膜压电氮化铝传感的新型压电光极的显微结构和电学性能

薄膜压电材料目前用于微型和纳米设备,用于能量收集和机械传感。然而,将这些功能层沉积到非刚性/非平面基材上是非常具有挑战性的,例如光纤 (OF)。除了最近作为生物传感和生物驱动探针的新应用之外,将它们与压电薄膜和金属电极结合的可能性可以为新型光电机械传感器(例如波导、光学相位调制器、可调滤波器、能量收集器或生物传感器)。在这项工作中,薄膜压电纤锌矿相氮化铝 (AlN) 的沉积,夹在钼 (Mo) 电极之间,在具有聚合物包层的光纤的弯曲侧面上,首次报道,无需定向促进夹层。材料表面特性和形态通过显微技术表征。SEM、PFM 和 X 射线衍射分析证明了平面聚合物的高取向性,产生的压电系数 (d33) 为 ~5.4 pm/V,而通过 AFM 测量的表面粗糙度 Rms 为 9 ÷ 16 nm。通过机械屈曲测试研究了所得的基于 AlN 的压电电极的输出机械传感能力:弱脉冲负载的峰峰值电压随着相对位移的增加(高达 30%)而增加,范围为 20 ÷ 35 毫伏。阻抗谱频率扫描 (10 kHz-1 MHz, 1 V) 表明传感器电容约为 8 pF,电 Q 因子高达 150。
更新日期:2021-01-01
down
wechat
bug