当前位置: X-MOL 学术IEEE Trans. Ind. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved Harmonic Iron Loss and Stator Current Vector Determination for Maximum Efficiency Control of PMSM in EV Applications
IEEE Transactions on Industry Applications ( IF 4.4 ) Pub Date : 2021-01-01 , DOI: 10.1109/tia.2020.3034888
Aiswarya Balamurali , Animesh Kundu , Ze Li , Narayan C. Kar

The accurate control of interior permanent magnet synchronous machine (IPMSM) and drive in electric vehicle applications is vital for achieving superior performance over a wide range of speeds and loads. Many control methods such as loss minimization and maximum efficiency (ME) have been developed to improve the efficiency of the motor–drive, by mainly considering the controllable fundamental losses. This article includes the effect of stator harmonic iron losses caused primarily by inverter sideband time harmonics that contribute to a significant amount of controllable electrical losses in IPMSMs. The sideband harmonic iron losses have been analytically modeled using a novel dq–axis model incorporating harmonic iron loss resistance. Subsequently, the harmonic iron losses have been included in an offline procedure used to determine optimal current advance angle for increased motor efficiency. The improved IPMSM losses and subsequently, the analytical efficiency models have been derived by considering varying motor parameters due to saturation and cross–saturation effects. The accuracy of the developed model and the improved ME control using the optimal current angle have been validated using numerical simulations and experimental investigations on a laboratory IPMSM.

中文翻译:

改进谐波铁损和定子电流矢量确定,用于电动汽车应用中 PMSM 的最大效率控制

电动汽车应用中内部永磁同步电机 (IPMSM) 和驱动器的精确控制对于在广泛的速度和负载范围内实现卓越性能至关重要。已经开发了许多控制方法,例如损耗最小化和最大效率 (ME),主要通过考虑可控的基本损耗来提高电机驱动器的效率。本文包括主要由逆变器边带时间谐波引起的定子谐波铁损的影响,这些谐波对 IPMSM 中的大量可控电气损耗有贡献。边带谐波铁损已使用包含谐波铁损电阻的新型 dq 轴模型进行分析建模。随后,谐波铁损已包含在用于确定最佳电流提前角以提高电机效率的离线程序中。改进的 IPMSM 损耗和随后的分析效率模型已经通过考虑由于饱和和交叉饱和效应而变化的电机参数推导出来。已开发模型的准确性和使用最佳电流角度改进的 ME 控制已使用实验室 IPMSM 上的数值模拟和实验研究得到验证。
更新日期:2021-01-01
down
wechat
bug