当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile sputtering enables double-layered ZnO electron transport layer for PbS quantum dot solar cells
Solar Energy ( IF 6.7 ) Pub Date : 2020-12-31 , DOI: 10.1016/j.solener.2020.11.042
Meiying Li , Shuaipu Zang , Yinglin Wang , Jinhuan Li , Jiangang Ma , Xintong Zhang , Yichun Liu

PbS colloidal quantum dot solar cells (CQDSCs) employ ZnO electron transport layer have achieved high efficiency. However, there is nearly no efficient and batch production method to balance the charge separation and recombination within the device, which is one of the most obviously barrier to a satisfactory conversion efficiency. Here, a n+-n double-layered ZnO electron transport layer (DETL) is prepared by a facile one-step magnetron sputtering under different Ar pressure, and employed in heterojunction PbS colloidal quantum dot solar cells (CQDSCs) for the purpose of increasing charge separation at heterojunction interface via energy-band alignment modulation. The ZnO DETL, composed of a 100-nm-thick n+-ZnO bottom layer (n = 8 × 1019 cm−3) and a 20-nm-thick n-ZnO top layer (n = 3 × 1016 cm−3) significantly improve the power conversion efficiency (PCE) of the CQDSCs by a factor of ~35% compared to the device with single-layered n- ZnO. Open-circuit photovoltage decay (OCVD) measurements prove that the graded energy alignment of ZnO DETL effectively reduces both interfacial and trapping-assisted charge recombination, relative to the single-layered ZnO. The facile Ar-pressure tuning method makes the energy-band alignment process more convenient and sheds a light on the application of DETL electrons transport layer, fabricated by the universal technique of magnetron sputtering.



中文翻译:

便捷的溅射使PbS量子点太阳能电池能够使用双层ZnO电子传输层

采用ZnO电子传输层的PbS胶体量子点太阳能电池(CQDSC)取得了很高的效率。然而,几乎没有有效且分批的生产方法来平衡装置内的电荷分离和复合,这是获得令人满意的转化效率的最明显障碍之一。此处,通过在不同的Ar压力下进行简便的一步磁控溅射制备+ -n双层ZnO电子传输层(DETL),并将其用于异质结PbS胶体量子点太阳能电池(CQDSC)中,以增加电荷通过能带对准调制在异质结界面处进行分离。ZnO DETL,由厚度为100 nm的n + -ZnO底层构成(n  = 8×10 19cm -3)和20 nm厚的n-ZnO顶层(n  = 3×10 16 cm -3),与器件相比,CQDSC的功率转换效率(PCE)显着提高了约35%。单层n-ZnO。开路光电压衰减(OCVD)测量证明,相对于单层ZnO,ZnO DETL的梯度能级排列有效地减少了界面和陷阱辅助的电荷复合。简便的Ar压力微调方法使能带对准过程更加方便,并为通过磁控溅射通用技术制造的DETL电子传输层的应用提供了启示。

更新日期:2020-12-31
down
wechat
bug