当前位置: X-MOL 学术J. Renew. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Servo-aero-gravo-elastic (SAGE) scaling and its application to a 13-MW downwind turbine
Journal of Renewable and Sustainable Energy ( IF 2.5 ) Pub Date : 2020-11-01 , DOI: 10.1063/5.0021171
Meghan Kaminski 1 , Eric Loth 1 , Daniel Zalkind 2 , Lucy Pao 2 , Michael Selig 3 , Kathryn Johnson 4
Affiliation  

Reduced scale wind turbines can be extremely cost-effective to test new rotor concepts since prototype costs are heavily dependent on the rotor diameter. Ideally, the scaled model would have the same non-dimensional deflections, dynamics, and control behavior as the full-scale model. This would provide a high-fidelity demonstration of the full-scale performance, which is ideal if the full-scale turbine has significant aeroelastic interactions. To this end, servo-aero-gravo-elastic (SAGE) scaling is developed and applied to a 13-MW turbine that is scaled to a 20% scale model. The scaling preserves the tip-speed ratio, the rotor speed normalized by the flapping frequency, and the tip deflections normalized by the blade length. In addition, the controller employs the same control structure (gain-scheduled pitch control and variable speed torque control) and is scaled dynamically (e.g., matching non-dimensional time constant of the pitch angle, etc.). Furthermore, the thrust, gravity, and centrifugal moments are scaled such that the load angles are preserved as a function of a non-dimensional wind speed. However, the environmental scaling must consider differences in Reynolds number (since this parameter cannot be held constant) and subsequent changes in the axial induction factor. While the presented results showcase these differences during operational conditions, the non-dimensional tip deflections remain comparable through all wind speed ranges, indicating the viability of the SAGE scaling method in matching full-scale aeroelastic responses.

中文翻译:

Servo-aero-gravo-elastic (SAGE) 缩放及其在 13 MW 顺风涡轮机中的应用

由于原型成本在很大程度上取决于转子直径,因此缩小规模的风力涡轮机对于测试新的转子概念非常具有成本效益。理想情况下,比例模型将具有与全比例模型相同的无量纲偏转、动力学和控制行为。这将提供全尺寸性能的高保真演示,如果全尺寸涡轮机具有显着的气动弹性相互作用,这是理想的。为此,开发了伺服气动重力弹性 (SAGE) 缩放并将其应用于缩放到 20% 比例模型的 13 MW 涡轮机。缩放保留叶尖速度比、由扑动频率归一化的转子速度以及由叶片长度归一化的叶尖偏转。此外,控制器采用相同的控制结构(增益调度桨距控制和变速转矩控制)并动态缩放(例如匹配桨距角的无量纲时间常数等)。此外,推力、重力和离心力矩被缩放,使得载荷角保持为无量纲风速的函数。然而,环境标度必须考虑雷诺数的差异(因为该参数不能保持恒定)和轴向感应系数的后续变化。虽然所呈现的结果展示了操作条件下的这些差异,但无量纲尖端偏转在所有风速范围内保持可比性,表明 SAGE 缩放方法在匹配全尺寸气动弹性响应方面的可行性。匹配俯仰角的无量纲时间常数等)。此外,推力、重力和离心力矩被缩放,使得载荷角保持为无量纲风速的函数。然而,环境标度必须考虑雷诺数的差异(因为该参数不能保持恒定)和轴向感应系数的后续变化。虽然所呈现的结果展示了操作条件下的这些差异,但无量纲尖端偏转在所有风速范围内保持可比性,表明 SAGE 缩放方法在匹配全尺寸气动弹性响应方面的可行性。匹配桨距角的无量纲时间常数等)。此外,推力、重力和离心力矩被缩放,使得载荷角保持为无量纲风速的函数。然而,环境标度必须考虑雷诺数的差异(因为该参数不能保持恒定)和轴向感应系数的后续变化。虽然所呈现的结果展示了操作条件下的这些差异,但无量纲尖端偏转在所有风速范围内保持可比性,表明 SAGE 缩放方法在匹配全尺寸气动弹性响应方面的可行性。并且离心力矩被缩放,使得载荷角被保留为无量纲风速的函数。然而,环境标度必须考虑雷诺数的差异(因为该参数不能保持恒定)和轴向感应系数的后续变化。虽然所呈现的结果展示了操作条件下的这些差异,但无量纲尖端偏转在所有风速范围内保持可比性,表明 SAGE 缩放方法在匹配全尺寸气动弹性响应方面的可行性。并且离心力矩被缩放,使得载荷角被保留为无量纲风速的函数。然而,环境标度必须考虑雷诺数的差异(因为该参数不能保持恒定)和轴向感应系数的后续变化。虽然所呈现的结果展示了操作条件下的这些差异,但无量纲尖端偏转在所有风速范围内保持可比性,表明 SAGE 缩放方法在匹配全尺寸气动弹性响应方面的可行性。
更新日期:2020-11-01
down
wechat
bug