当前位置: X-MOL 学术Solid State Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CNT facilitated interfacial charge transfer of TiO2 nanocomposite for controlling the electron-hole recombination
Solid State Sciences ( IF 3.5 ) Pub Date : 2020-12-29 , DOI: 10.1016/j.solidstatesciences.2020.106492
Hitesh Kumar Sharma , Sanjeev K. Sharma , Koteswararao Vemula , Agni Raj Koirala , Hemraj M. Yadav , Beer Pal Singh

We studied the nucleation and growth of TiO2 nanoflowers and carbon nanotubes-TiO2 nanocomposite (n-CNT-TiO2) by the hydrothermal method in a single step at 150 °C and tested them for the photocatalytic degradation of MB. The microstructural analysis confirmed the transformation of TiO2 nanoflowers to CNT-TiO2 spheres due to the role of surface energy of CNT. The XRD peak profile analysis of TiO2 and n-CNT-TiO2 confirmed the formation of pure rutile phase of Titania sintered at 400 °C. A red-shift in the bandgap of n-CNT-TiO2 nanocomposite (2.7eV) was observed due to the donor states towards the conduction band edge. The core-level of XPS showed the strong interaction between carbon and titanium atoms. The CNT facilitate the interfacial charge transfer or avoid the formation of charge recombination due to the variation of Ti4+ to Ti3+ sites. The highest photocatalytic degradation was achieved by using the photocatalyst of n-CNT-TiO2 nanocomposite. The incorporation of CNT provides the interfacial charge transfer facility that creates new interbands energy states for the delay of electron-hole recombination, which cater the environmental remediation.



中文翻译:

CNT有助于TiO 2纳米复合材料的界面电荷转移,从而控制电子-空穴复合

我们在150°C下通过一步水热法研究了TiO 2纳米花和碳纳米管-TiO 2纳米复合材料(n-CNT-TiO 2)的形核和生长,并测试了它们对MB的光催化降解。微观结构分析证实了由于CNT表面能的作用,TiO 2纳米花转变为CNT-TiO 2球。TiO 2和n-CNT-TiO 2的XRD峰轮廓分析证实了在400℃下烧结的二氧化钛的纯金红石相的形成。n-CNT-TiO 2带隙中的红移由于施主态朝向导带边缘,因此观察到纳米复合材料(2.7eV)。XPS的核心水平显示出碳和钛原子之间的强相互作用。CNT有助于界面电荷转移或避免由于Ti 4+到Ti 3+位的变化而形成电荷复合。通过使用n-CNT-TiO 2纳米复合材料的光催化剂可以实现最高的光催化降解。CNT的结合提供了界面电荷转移功能,可创建新的带间能态以延缓电子-空穴复合,从而满足环境修复的需要。

更新日期:2021-01-06
down
wechat
bug