当前位置: X-MOL 学术Nanotechnol. Russia › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Catalytic Polyfunctional Nanomaterials for the Hydrogen Production Processes
Nanotechnologies in Russia Pub Date : 2020-12-28 , DOI: 10.1134/s1995078020030106
D. I. Potemkin , P. V. Snytnikov , S. D. Badmaev , S. I. Uskov , A. M. Gorlova , V. N. Rogozhnikov , A. A. Pechenkin , A. V. Kulikov , V. A. Shilov , N. V. Ruban , V. D. Belyaev , V. A. Sobyanin

Abstract

The processes of hydrogen production from various types of fossil and renewable fuels are energy-intensive multi-route chemical reactions, and for their efficient implementation it is necessary to use selective and high-performance catalysts that combine high activity, thermal conductivity, and corrosion and thermal resistance. A general strategy for the design of catalytic systems for hydrogen production is outlined; it consists in the use of composite catalysts of the “metal nanoparticles/active oxide nanoparticles/structural oxide component/structured metal support” type; an approach for their directed synthesis is described. The structured metal support provides efficient heat removal or supply for exo- or endothermic reactions, possesses good hydrodynamic characteristics, and facilitates scale transition. The structural oxide component (aluminum oxide) provides thermal and corrosion resistance and a high specific surface area of the catalytic coating, as well as performing a protective function for the metal support. The active oxide component (mainly cerium–zirconium oxides) increases resistance to carbonization due to oxygen mobility and maintains a high dispersion of the active component due to its strong metal–support interaction. Metal nanoparticles 1–2 nm in size are involved in the activation of substrate molecules. FeCrAl alloy wire meshes, formed into cylindrical blocks of specified sizes, to be used as a heat-conducting substrate. By controlled annealing with the formation of a micron α-Al2O3 layer and subsequent deposition of a η-Al2O3 layer according to the Bayer method (through aluminum hydroxide), a structural layer of η-Al2O3 with a “breathing” needle morphology was deposited onto the FeCrAl alloy surface; then the catalytic active component was deposited onto this layer by impregnation and/or deposition. The efficiency of the proposed strategy is shown for Rh/Ce0.75Zr0.25O2 – δ–η-Al2O3/FeCrAl catalysts for methane tri-reforming and Cu–CeO2 – δ/η-Al2O3/FeCrAl catalysts for dimethoxymethane steam reforming.



中文翻译:

用于制氢过程的催化多官能纳米材料的设计

摘要

由各种类型的化石燃料和可再生燃料生产氢的过程是能源密集的多路线化学反应,为了有效实施,必须使用结合了高活性,导热性,耐腐蚀和选择性的选择性高性能催化剂。热阻。概述了设计用于制氢的催化系统的一般策略。它包括使用“金属纳米颗粒/活性氧化物纳米颗粒/结构氧化物组分/结构化金属载体”类型的复合催化剂;描述了其直接合成的方法。结构化金属载体为放热或吸热反应提供有效的除热或补给,具有良好的流体动力学特性,并有助于水垢转变。结构性氧化物组分(氧化铝)提供了催化涂层的耐热性和耐腐蚀性以及高比表面积,并对金属载体起到了保护作用。活性氧化物组分(主要是铈-锆氧化物)由于氧的迁移而提高了抗碳化性,并由于其强大的金属-载体相互作用而保持了活性组分的高分散性。大小为1-2 nm的金属纳米颗粒与底物分子的活化有关。形成为指定尺寸的圆柱块的FeCrAl合金丝网,用作导热基材。通过控制退火形成微米级的α-Al 以及对金属支架起到保护作用。活性氧化物组分(主要是铈-锆氧化物)由于氧的迁移而提高了抗碳化性,并由于其强大的金属-载体相互作用而保持了活性组分的高分散性。大小为1-2 nm的金属纳米颗粒与底物分子的活化有关。形成为指定尺寸的圆柱块的FeCrAl合金丝网,用作导热基材。通过控制退火形成微米级的α-Al 以及对金属支架起到保护作用。活性氧化物组分(主要是铈-锆氧化物)由于氧的迁移而提高了抗碳化性,并由于其强大的金属-载体相互作用而保持了活性组分的高分散性。大小为1-2 nm的金属纳米颗粒与底物分子的活化有关。形成为指定尺寸的圆柱块的FeCrAl合金丝网,用作导热基材。通过控制退火形成微米级的α-Al 大小为1-2 nm的金属纳米颗粒与底物分子的活化有关。形成为指定尺寸的圆柱块的FeCrAl合金丝网,用作导热基材。通过控制退火形成微米级的α-Al 大小为1-2 nm的金属纳米颗粒与底物分子的活化有关。形成为指定尺寸的圆柱块的FeCrAl合金丝网,用作导热基材。通过控制退火形成微米级的α-Al2 ö 3层和随后沉积η-Al系2 ö 3根据拜耳法(通过氢氧化铝)层,的结构层η-Al系2 ö 3与“呼吸”针形态沉积到铁铬合金表面; 然后通过浸渍和/或沉积将催化活性组分沉积到该层上。所提出的策略的效率被示出为铑/ CE 0.750.25 ö 2 - δ -η-Al系2 ö 3为甲烷三重整和Cu-CEO /铁铬催化剂2 - δ /η-Al系2 ö 3/ FeCrAl催化剂用于二甲氧基甲烷蒸汽重整。

更新日期:2020-12-28
down
wechat
bug