当前位置: X-MOL 学术Nanotechnol. Russia › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model Study of a Cold Start of a Power Plant Based on a Polymer Electrolyte Membrane Fuel Cells in the Conditions of Arctic Temperatures
Nanotechnologies in Russia Pub Date : 2020-12-28 , DOI: 10.1134/s1995078020030155
G. N. Voloshchenko , A. A. Zasypkina , D. D. Spasov

A model calculation of the startup of a power plant based on a polymer electrolyte membrane fuel cell (PEMFC). The power plant is equipped with a recombiner with a nanostructured hydrogen oxidation catalyst and a bubbler, filled with methanol, which absorbs water vapor, drying the heated air to prevent ice formation inside the fuel cell, which allows for autonomous cold start and operation in the Arctic region. A mathematical model was developed of start-up of PEMFC capacity 1 kW from ambient temperature in the Arctic region to the operating temperature of the fuel cell (warming up from –50 to +50°C). The characteristics of the heating modes were determined for the gradients of the fuel cell heating rate from 0.1 to 0.5°C/s. The proposed scheme of the heating unit and the mode of starting the power plant make it possible to reduce the heating element heating time to the operating temperature to ~6 min, as well as to reduce the volume of the heating unit used and to reduce the consumption of hydrogen supplied in a mixture with air to 3 vol %. The proposed scenario of cold start ensures the temperature stability of the heating unit, which guarantees the safety of heating the fuel cell and the installation as a whole. The use of methanol to remove water vapor from the hydrogen stream and replace them with methanol vapor allows the cold start temperature of the fuel cell to be reduced to -50°C due to the prevention of crystallization of water vapor in the bulk of FC components at the initial stages of heating.



中文翻译:

北极温度下基于聚合物电解质膜燃料电池的发电厂冷启动模型研究

基于聚合物电解质膜燃料电池(PEMFC)的发电厂启动的模型计算。该电厂配备了带有纳米结构氢氧化催化剂的重组器和装有甲醇的起泡器,该起泡器吸收水蒸气,干燥加热的空气以防止燃料电池内部结冰,从而可以在燃料电池中进行自主的冷启动和运行。北极地区。建立了从北极地区环境温度到燃料电池工作温度(从–50到+ 50°C的升温)启动1 kW PEMFC容量的数学模型。对于燃料电池加热速率从0.1至0.5℃/ s的梯度,确定了加热模式的特性。加热单元的建议方案和发电厂的启动方式可以将加热元件加热到工作温度的时间减少到〜6分钟,并且可以减少使用的加热单元的体积并减少加热的时间。与空气的混合物中供应的氢气消耗量为3体积%。所提出的冷启动方案可确保加热单元的温度稳定性,从而确保加热燃料电池和整个装置的安全性。使用甲醇从氢气流中除去水蒸气并用甲醇蒸气代替水蒸气,由于可防止大部分FC组件中的水蒸气结晶,因此可将燃料电池的冷启动温度降至-50°C。在加热的初始阶段。以及减少使用的加热单元的体积以及将与空气的混合物中供应的氢的消耗降低到3体积%。所提出的冷启动方案可确保加热单元的温度稳定性,从而确保加热燃料电池和整个装置的安全性。使用甲醇从氢气流中除去水蒸气并用甲醇蒸气代替水蒸气,由于可防止大部分FC组件中的水蒸气结晶,因此可将燃料电池的冷启动温度降至-50°C。在加热的初始阶段。以及减少使用的加热单元的体积以及将与空气的混合物中供应的氢的消耗降低到3体积%。所提出的冷启动方案可确保加热单元的温度稳定性,从而保证加热燃料电池和整个装置的安全性。使用甲醇从氢气流中除去水蒸气并用甲醇蒸气代替水蒸气,由于可防止大部分FC组件中的水蒸气结晶,因此可将燃料电池的冷启动温度降至-50°C。在加热的初始阶段。这保证了加热燃料电池和整个装置的安全性。使用甲醇从氢气流中除去水蒸气并用甲醇蒸气代替水蒸气,由于可防止大部分FC组件中的水蒸气结晶,因此可将燃料电池的冷启动温度降至-50°C。在加热的初始阶段。这保证了加热燃料电池和整个装置的安全性。使用甲醇从氢气流中除去水蒸气并用甲醇蒸气代替水蒸气,由于可防止大部分FC组件中的水蒸气结晶,因此可将燃料电池的冷启动温度降至-50°C。在加热的初始阶段。

更新日期:2020-12-28
down
wechat
bug