当前位置: X-MOL 学术Field Crops Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Warm air temperatures increase photosynthetic acclimation to elevated CO2 concentrations in rice under field conditions
Field Crops Research ( IF 5.8 ) Pub Date : 2020-12-24 , DOI: 10.1016/j.fcr.2020.108036
Manman Yuan , Chuang Cai , Xiaozhong Wang , Gang Li , Gang Wu , Jiabao Wang , Wei Geng , Gang Liu , Jianguo Zhu , Yixiang Sun

Photosynthetic acclimation to elevated atmospheric CO2 concentration ([CO2]) accompanies decreased leaf nitrogen (N) content. Elevated air temperatures may enhance crop N nutrient content. Whether enhanced leaf N content at high temperatures relieves photosynthetic acclimation to high [CO2] in rice is unclear, so we investigated the effects of elevated [CO2] (eC; ambient [CO2]+200 μmol mol−1 CO2 and ambient temperature), elevated air temperature (eT; ambient+1 °C), and elevated temperature and [CO2] together (eT + eC; ambient+1 °C +200 μmol mol−1 CO2) compared to ambient [CO2] and temperature (Ambient) on photosynthetic and physiological parameters, biomass, and N accumulation and distribution throughout rice grain filling stages in 2015 and 2016. Net leaf photosynthesis (Pn) increased under eC, but the magnitude of Pn increase decreased as grain filling progressed, which was exacerbated under eT + eC. The total leaf N (TLN) content decreased by 7.1 % and increased by 4.7 % on average during the whole grain filling stage under eC and eT compared with Ambient, respectively. However, increasing TLN under elevated temperature did not offset the TLN reduction under [CO2] enrichment, similar to the effects of elevated [CO2] and air temperature on chlorophyll (Chl) and carotenoid (Caro) content. The percentage decrease in Rubisco content was larger under individual changes or the combined elevation of [CO2] and air temperature than the percentage change in TLN under eC. Meanwhile, the maximum rate of Rubisco carboxylation at 25 °C (Vcmax25) and the maximum rate of electron transport driving RuBP regeneration at 25 °C (Jmax25) declined significantly under eT + eC. Vcmax25 had a positive relationship with Rubisco content, and Jmax25 had a positive relationship with Chl and Caro content. At the crop level, eC enhanced biomass but reduced N distribution in leaves. Furthermore, the decrease in biomass had a greater effect than the increase in TLN under eT, reducing N distribution in leaves. Photosynthetic acclimation was mainly due to the reduction in TLN and crop N distribution and the increased reduction in leaf N distribution to Rubisco under eT + eC. Therefore, an air temperature increase of approximately 1 °C exacerbated photosynthetic acclimation under eC. These results further elucidated the photosynthesis responses in rice to future climate conditions.



中文翻译:

温暖的气温在田间条件下使水稻的光合适应提高到CO 2浓度升高

光合适应大气中CO 2浓度升高([CO 2 ])伴随着叶片氮(N)含量降低。升高的气温可能会增加作物的氮素含量。尚不清楚高温下叶片氮含量的增加是否能缓解水稻对高[CO 2 ]的光合适应,因此我们研究了升高[CO 2 ](eC;环境[CO 2 ] +200μmolmol -1 CO 2和环境温度),升高的空气温度(eT;环境+1°C)以及升高的温度和[CO 2 ]一起(eT + eC;环境+1°C +200μmolmol -1 CO 2[2 ]和温度(环境温度)对2015年和2016年整个水稻籽粒充实阶段的光合和生理参数,生物量和氮积累和分布的影响。在eC下,净叶片光合作用(P n)增加,但随着增加,P n增加的幅度减小籽粒充实进行,在eT + eC下加剧了。与Ambient相比,在eC和eT下,整个籽粒灌浆期的总叶N(TLN)含量分别降低7.1%和平均4.7%。然而,升高的温度下增加的TLN没有偏移下的TLN还原[CO 2 ]的富集,类似的升高的影响[CO 2]和空气温度对叶绿素(Chl)和类胡萝卜素(Caro)含量的影响。在单独变化或[CO 2 ]和空气温度的综合升高下,Rubisco含量的降低百分比大于在eC下TLN的百分比变化。同时,在eT + eC下,在25°C时Rubisco羧化的最大速率(V cmax25)和在25°C时驱动RuBP再生的电子传输的最大速率(J max25)显着下降。V cmax25与Rubisco含量呈正相关,而J max25与Chl和Caro含量呈正相关。在作物水平上,eC增强了生物量,但减少了叶片中的氮分布。此外,在eT下,生物量的减少比TLN的增加具有更大的影响,从而减少了叶片中的N分布。在eT + eC下,光合作用的适应主要是由于TLN和农作物N分布的减少以及向Rubisco的叶片N分布的增加的减少。因此,大约1°C的空气温度升高会加剧eC下的光合作用。这些结果进一步阐明了水稻对未来气候条件的光合作用响应。

更新日期:2020-12-25
down
wechat
bug