当前位置: X-MOL 学术J. Electrostat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Increasing force generation in electroadhesive devices through modelling of novel electrode geometries
Journal of Electrostatics ( IF 1.8 ) Pub Date : 2020-12-24 , DOI: 10.1016/j.elstat.2020.103540
Masoud Bigharaz , Torsten Schenkel , Paul A. Bingham

Two approaches were taken to increase the obtainable electroadhesive (EA) forces from EA electrode devices using finite element analysis (FEA): (i) optimising electrode widths and spacings using 2D parametric simulations; and (ii) optimising electrode geometries using 3D simulations. The Maxwell stress distributions generated by the simulated EA pads are reported; and illustrate how electrode geometries influence the EA forces generated. The FEA analyses were carried out using ANSYS MAXWELL with an automatic adaptive mesh refinement (AMR) technique which accelerates convergence and decreases the number of elements needed for study of mesh independency. The 2D parametric FEA shows optimum electrode widths of 2.6 mm and optimum spacing between electrodes of 0.2 mm for an effective surface of EA pads. 3D FEA shows that from the studied EA pads with a constant effective area, sine-wave shaped electrodes can generate substantially enhanced EA forces compared to other electrode geometries. This is attributed to maximising the electric field gradient and could benefit multiple applications. The simulation procedure is also validated by real-world problems.



中文翻译:

通过对新型电极几何形状进行建模来增加电胶设备中的力产生

采取了两种方法来使用有限元分析(FEA)增加从EA电极设备可获得的电粘附(EA)力:(i)使用2D参数模拟优化电极宽度和间距;(ii)使用3D模拟优化电极的几何形状。报告了由模拟EA垫生成的Maxwell应力分布;并说明电极几何形状如何影响所产生的EA力。FEA分析是使用ANSYS MAXWELL和自动自适应网格细化(AMR)技术进行的,该技术可加快收敛速度​​并减少研究网格独立性所需的元素数量。对于EA焊盘的有效表面,二维参数化FEA显示出2.6毫米的最佳电极宽度和0.2毫米的最佳电极间距。3D FEA显示,从研究的具有恒定有效面积的EA焊盘来看,与其他电极几何形状相比,正弦波形电极可以产生大大增强的EA力。这归因于使电场梯度最大化,并且可以使多种应用受益。仿真过程还通过实际问题进行了验证。

更新日期:2020-12-24
down
wechat
bug