当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparing the pyrolysis kinetics of dimethoxymethane and 1,2-dimethoxyethane: An experimental and kinetic modeling study
Combustion and Flame ( IF 4.4 ) Pub Date : 2020-12-24 , DOI: 10.1016/j.combustflame.2020.12.013
Wenyu Sun , Zhongkai Liu , Yan Zhang , Yitong Zhai , Chuangchuang Cao , Jiuzhong Yang , Bin Yang

This work investigates the reaction kinetics of the thermal decomposition of dimethoxymethane (DMM) and 1,2-dimethoxyethane (1,2-DME), which are both representative molecules of the promising clean polyether fuels. Pyrolysis experiments are carried out with helium diluted mixtures containing individual fuels in a flow tube at two different pressures of 760 Torr and 30 Torr. By varying the temperature distributions along the flow tube, the resulting species composition is sampled downstream the reactor and analyzed by a photoionization mass spectrometer. A kinetic model, including sub-mechanisms for the thermal decomposition of both fuels, is proposed, which can well characterize important measurements, such as the fuel decomposition reactivity and the speciation of crucial products. Under identical conditions, 1,2-DME exhibits a higher decomposition reactivity than DMM, because of the characteristic C–C bond fission as well as the easier hydrogen abstraction reactions by methyl radical. Some fuel-specific intermediates are observed, including methyl formate in DMM pyrolysis, methyl vinyl ether and methoxy acetaldehyde in 1,2-DME pyrolysis. These species mainly come from fuel radical dissociations following the hydrogen abstractions from the central (–CH2O–) and (–CH2CH2O–) moieties in DMM and 1,2-DME, respectively. The formation of some other intermediates are closely related to the consumption of these fuel-specific species. Particularly, the decomposition of methyl formate produces high concentrations of methanol in DMM pyrolysis. In 1,2-DME pyrolysis, the consumption of methyl vinyl ether and methoxy acetaldehyde brings about the formation of C2 oxygenated intermediates such as acetaldehyde, ethenol and ketene. Higher concentrations of unsaturated C2 (ethylene and acetylene) and larger hydrocarbon intermediates present in 1,2-DME pyrolysis, due to the existence of C–C bond in the fuel molecule.



中文翻译:

比较二甲氧基甲烷和1,2-二甲氧基乙烷的热解动力学:实验和动力学建模研究

这项工作研究了二甲氧基甲烷(DMM)和1,2-二甲氧基乙烷(1,2-DME)的热分解反应动力学,它们都是有前途的清洁聚醚燃料的代表分子。在流量管中以760 Torr和30 Torr的两种不同压力对含有稀有燃料的氦稀释混合物进行热解实验。通过改变沿流管的温度分布,在反应器下游对所得的物种组成进行采样,并通过光电离质谱仪进行分析。提出了一个动力学模型,包括用于两种燃料热分解的子机制,该模型可以很好地表征重要的测量值,例如燃料分解反应性和关键产品的形态。在相同条件下,1 2-DME的分解反应性比DMM高,这是由于特征性的C–C键裂变以及更容易通过甲基进行的氢提取反应。观察到一些特定于燃料的中间体,包括DMM热解中的甲酸甲酯,1,2-DME热解中的甲基乙烯基醚和甲氧基乙醛。这些物质主要来自于从中心(-CH在DMM和1,2-DME中分别具有2 O–)和(–CH 2 CH 2 O–)部分。其他一些中间体的形成与这些燃料特定物质的消耗密切相关。特别地,在DMM热解中,甲酸甲酯的分解产生高浓度的甲醇。在1,2-DME热解中,甲基乙烯基醚和甲氧基乙醛的消耗导致形成C 2氧化的中间体,例如乙醛,乙炔和乙烯酮。1,2-DME热解中存在较高浓度的不饱和C 2(乙烯和乙炔)和较大的烃中间体,这是由于燃料分子中存在C–C键。

更新日期:2020-12-25
down
wechat
bug