当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Formation of Venus, Earth and Mars: Constrained by Isotopes
Space Science Reviews ( IF 10.3 ) Pub Date : 2020-12-22 , DOI: 10.1007/s11214-020-00778-4
Helmut Lammer , Ramon Brasser , Anders Johansen , Manuel Scherf , Martin Leitzinger

Here we discuss the current state of knowledge of terrestrial planet formation from the aspects of different planet formation models and isotopic data from 182Hf-182W, U-Pb, lithophile-siderophile elements, 48Ca/44Ca isotope samples from planetary building blocks, recent reproduction attempts from 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne isotope ratios in Venus’ and Earth’s atmospheres, the expected solar 3He abundance in Earth’s deep mantle and Earth’s D/H sea water ratios that shed light on the accretion time of the early protoplanets. Accretion scenarios that can explain the different isotope ratios, including a Moon-forming event ca. 50 Myr after the formation of the Solar System, support the theory that the bulk of Earth’s mass (≥80%) most likely accreted within 10–30 Myr. From a combined analysis of the before mentioned isotopes, one finds that proto-Earth accreted most likely a mass of 0.5–0.6 \(M\)Earth within the first ≈3–4.5 Myr, the approximate lifetime of the protoplanetary disk. For Venus, the available atmospheric noble gas data are too uncertain for constraining the planet’s accretion scenario accurately. However, from the available imprecise Ar and Ne isotope measurements, one finds that proto-Venus could have grown to a mass of up to 0.85–1.0 \(M\)Venus before the disk dissipated. Classical terrestrial planet formation models have struggled to grow large planetary embryos, or even cores of giant planets, quickly from the tiniest materials within the typical lifetime of protoplanetary disks. Pebble accretion could solve this long-standing time scale controversy. Pebble accretion and streaming instabilities produce large planetesimals that grow into Mars-sized and larger planetary embryos during this early accretion phase. The later stage of accretion can be explained well with the Grand-Tack model as well as the annulus and depleted disk models. The relative roles of pebble accretion and planetesimal accretion/giant impacts are poorly understood and should be investigated with N-body simulations that include pebbles and multiple protoplanets. To summarise, different isotopic dating methods and the latest terrestrial planet formation models indicate that the accretion process from dust settling, planetesimal formation, and growth to large planetary embryos and protoplanets is a fast process that occurred to a great extent in the Solar System within the lifetime of the protoplanetary disk.



中文翻译:

金星,地球和火星的形成:受同位素约束

在这里,我们从不同的行星形成模型和来自182 Hf- 182 W,U-Pb,嗜石-亲铁元素,来自行星构造块的48 Ca / 44 Ca同位素样品的同位素数据的方面,讨论了地球行星形成的当前知识状态。,最近在金星和地球大气层中的36 Ar / 38 Ar,20 Ne / 22 Ne,36 Ar / 22 Ne同位素比的再生产尝试,预期的太阳3他丰富的地球深地幔和地球D / H海水比值揭示了早期原行星的增生时间。可以解释不同同位素比率的增生情景,包括一个月球形成事件。太阳系形成后的50 Myr支持这一理论,即地球质量的大部分(≥80%)最有可能在10-30 Myr内吸收。通过对上述同位素的综合分析,人们发现原始地球最有可能吸收质量为0.5–0.6 \(M \)的地球在第一个≈3-4.5Myr范围内,即原行星盘的近似寿命。对于金星来说,可用的大气稀有气体数据太不确定了,无法准确地限制地球的吸积情况。然而,从现有的不精确的Ar和Ne同位素测量中,人们发现原金星可能已经长到质量达0.85–1.0  \(M \)金星在磁盘消散之前。古典的地球行星形成模型一直难以在典型的原行星盘寿命内,从最微小的材料中快速生长出大型行星胚胎,甚至是巨型行星的核心。卵石的积聚可以解决这一长期存在的时间尺度争议。卵石的积聚和流动不稳定性会产生较大的小行星,在此早期积聚阶段,它们会长成火星大小的行星胚胎。增生的后期阶段可以用Grand-Tack模型以及环空模型和枯竭的磁盘模型很好地解释。人们对卵石积聚和行星状积聚/巨人撞击的相对作用了解甚少,应通过包括卵石和多个原行星在内的N体模拟进行研究。总而言之,

更新日期:2020-12-23
down
wechat
bug