当前位置: X-MOL 学术Physica E Low Dimens. Syst. Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications
Physica E: Low-dimensional Systems and Nanostructures ( IF 3.3 ) Pub Date : 2020-12-22 , DOI: 10.1016/j.physe.2020.114589
Sanjeev Kumar , Navdeep Kaur , Viplove Bhullar , Aman Mahajan

Herein, the hydrothermal route has been explored to design a novel network of molybdenum sulfide (MoS2) nanorods/reduced graphene oxide (rGO) by varying wt% of MoS2 (10–30 wt%) for the highly stable and efficient electrochemical energy conversion applications involving dye sensitized solar cells (DSSCs); and direct methanol fuel cells (DMFCs). The MoS2/rGO nanohybrids network has been systematically characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD, HRTEM, Raman and XPS investigations confirmed the uniform and homogenous anchoring of MoS2 nanorods on the rGO sheets in the MoS2/rGO nanohybrids. It has been revealed that the wt% of MoS2 in MoS2/rGO nanohybrids strongly affects the anchoring of MoS2 nanorods on rGO sheets which in turn affects their electrocatalytic behavior. The optimized MoS2/rGO nanohybrids with 20 wt% of MoS2 nanorods exhibited long term stability and highly efficient electrocatalytic behavior. DSSCs assembled with MoS2/rGO nanohybrids as CE exhibited comparable power conversion efficiency (PCE) relative to standard DSSC. The optimized anchoring of MoS2 on rGO sheets resulted in high current density as compared to rGO based electrocatalyst in MORs. Moreover, reproducibility of CV curves revealed high stability of MoS2/rGO nanohybrids under harsh electrolyte medium.



中文翻译:

MoS 2纳米棒锚固的还原氧化石墨烯纳米杂化物,用于电化学能量转换应用

在本文中,探索了水热途径,通过改变MoS 2的重量百分比(10-30 wt%)来设计新型的硫化钼(MoS 2)纳米棒/还原氧化石墨烯(rGO)网络,以实现高度稳定和高效的电化学能涉及染料敏化太阳能电池(DSSC)的转换应用;和直接甲醇燃料电池(DMFC)。MoS 2 / rGO纳米杂化物网络已通过X射线衍射(XRD),高分辨率透射电子显微镜(HRTEM),拉曼光谱,X射线光电子能谱(XPS),循环伏安法(CV)和电化学阻抗进行了系统表征光谱学(EIS)。XRD,HRTEM,拉曼和XPS研究证实了MoS 2的均匀和均匀锚固MoS 2 / rGO纳米杂化物中rGO板上的纳米棒。已经发现,硫化钼的wt%2中的MoS 2 / RGO纳米复合物强烈影响的MoS的锚固2个纳米棒上RGO片这反过来又影响了他们的电催化行为。具有20 wt%的MoS 2纳米棒的优化的MoS 2 / rGO纳米杂化物表现出长期稳定性和高效的电催化性能。与MoS 2 / rGO纳米杂化物作为CE组装的DSSC相对于标准DSSC表现出可比的功率转换效率(PCE)。MoS 2的优化锚固与MORs中基于rGO的电催化剂相比,rGO板上的碳纤维具有较高的电流密度。此外,CV曲线的可再现性表明,在苛刻的电解质介质下,MoS 2 / rGO纳米杂化物具有很高的稳定性。

更新日期:2021-01-02
down
wechat
bug