当前位置: X-MOL 学术SIAM J. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New Hardness Results for Routing on Disjoint Paths
SIAM Journal on Computing ( IF 1.6 ) Pub Date : 2020-12-18 , DOI: 10.1137/17m1146580
Julia Chuzhoy , David H. K. Kim , Rachit Nimavat

SIAM Journal on Computing, Ahead of Print.
In the classical node-disjoint paths (\sf NDP) problem, the input consists of an undirected $n$-vertex graph $G$, and a collection ${\mathcal M}=\{(s_1,t_1),\ldots,(s_k,t_k)\}$ of pairs of its vertices, called source-destination, or demand pairs. The goal is to route the largest possible number of the demand pairs via node-disjoint paths. The best current approximation for the problem is achieved by a simple greedy algorithm, whose approximation factor is $O(\sqrt n)$, while the best previous negative result is an $\Omega(\log^{1/2-\delta}n)$-hardness of approximation for any constant $\delta$, under standard complexity assumptions. Even seemingly simple special cases of the problem are still poorly understood: when the input graph is a grid, the best current algorithm achieves an $\tilde O(n^{1/4})$-approximation, and when it is a general planar graph, the best current approximation ratio of an efficient algorithm is $\tilde O(n^{9/19})$. The best previous lower bound on the approximability of both these versions of the problem is APX-hardness. In this paper, we prove that \sf NDP is $2^{\Omega(\sqrt{\log n})}$-hard to approximate, unless all problems in \sf NP have algorithms with running time $n^{O(\log n)}$. Our result holds even when the underlying graph is a planar graph with maximum vertex degree $3$, and all source vertices lie on the boundary of a single face (but the destination vertices may lie anywhere in the graph). We extend this result to the closely related edge-disjoint paths (\sf EDP) problem, showing the same hardness of approximation ratio even for subcubic planar graphs with all sources lying on the boundary of a single face.


中文翻译:

在不相交路径上布线的新硬度结果

《 SIAM计算杂志》,预印本。
在经典节点不相交路径(\ sf NDP)问题中,输入由无向$ n $-顶点图$ G $和集合$ {\ mathcal M} = \ {(s_1,t_1),\ ldots组成,(s_k,t_k)\} $的成对的顶点对,称为源-目标或需求对。目标是通过节点不相交的路径路由最大数量的需求对。该问题的最佳当前近似值是通过简单的贪心算法获得的,其近似因子为$ O(\ sqrt n)$,而最佳的先前负结果是$ \ Omega(\ log ^ {1 / 2- \ delta } n)在标准复杂性假设下,任何常数$ \ delta $的近似近似硬度。即使是看似简单的问题的特殊情况,也仍然难以理解:当输入图是网格时,最佳的当前算法达到$ \ tilde O(n ^ {1/4})$近似值,当它是一个普通的平面图时,一种有效算法的最佳电流逼近比为\\波浪线O(n ^ {9/19})$。这两个版本的问题的近似性的最佳先前下限是APX硬度。在本文中,我们证明\ sf NDP为$ 2 ^ {\ Omega(\ sqrt {\ log n})} $-难以近似,除非\ sf NP中的所有问题都有运行时间为$ n ^ {O( \ log n)} $。即使基础图是具有最大顶点度$ 3 $的平面图,并且所有源顶点都位于单个面的边界上(但目标顶点可能位于图中的任何位置),我们的结果仍然成立。我们将此结果扩展到紧密相关的边不相交路径(\ sf EDP)问题,即使对于所有源都位于单个面边界上的亚三次平面图,也显示出相同的近似比率硬度。有效算法的最佳当前近似比率为\\波浪线O(n ^ {9/19})$。这两个版本的问题的近似性的最佳先前下限是APX硬度。在本文中,我们证明\ sf NDP为$ 2 ^ {\ Omega(\ sqrt {\ log n})} $-难以近似,除非\ sf NP中的所有问题都有运行时间为$ n ^ {O( \ log n)} $。即使基础图是具有最大顶点度$ 3 $的平面图,并且所有源顶点都位于单个面的边界上(但目标顶点可能位于图中的任何位置),我们的结果仍然成立。我们将此结果扩展到密切相关的边不相交路径(\ sf EDP)问题,即使对于所有源都位于单个面边界上的亚三次平面图,也显示出相同的近似比率硬度。有效算法的最佳当前近似比率为\\波浪线O(n ^ {9/19})$。这两个版本的问题的近似性的最佳先前下限是APX硬度。在本文中,我们证明\ sf NDP为$ 2 ^ {\ Omega(\ sqrt {\ log n})} $-难以近似,除非\ sf NP中的所有问题都有运行时间为$ n ^ {O( \ log n)} $。即使基础图是具有最大顶点度$ 3 $的平面图,并且所有源顶点都位于单个面的边界上(但目标顶点可能位于图中的任何位置),我们的结果仍然成立。我们将此结果扩展到密切相关的边不相交路径(\ sf EDP)问题,即使对于所有源都位于单个面边界上的亚三次平面图,也显示出相同的近似比率硬度。
更新日期:2021-01-13
down
wechat
bug