当前位置: X-MOL 学术J. Plasma Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new frontier in laboratory physics: magnetized electron–positron plasmas
Journal of Plasma Physics ( IF 2.5 ) Pub Date : 2020-11-18 , DOI: 10.1017/s0022377820001385
M. R. Stoneking , T. Sunn Pedersen , P. Helander , H. Chen , U. Hergenhahn , E. V. Stenson , G. Fiksel , J. von der Linden , H. Saitoh , C. M. Surko , J. R. Danielson , C. Hugenschmidt , J. Horn-Stanja , A. Mishchenko , D. Kennedy , A. Deller , A. Card , S. Nißl , M. Singer , M. Singer , S. König , L. Willingale , J. Peebles , M. R. Edwards , K. Chin

We describe here efforts to create and study magnetized electron–positron pair plasmas, the existence of which in astrophysical environments is well-established. Laboratory incarnations of such systems are becoming ever more possible due to novel approaches and techniques in plasma, beam and laser physics. Traditional magnetized plasmas studied to date, both in nature and in the laboratory, exhibit a host of different wave types, many of which are generically unstable and evolve into turbulence or violent instabilities. This complexity and the instability of these waves stem to a large degree from the difference in mass between the positively and the negatively charged species: the ions and the electrons. The mass symmetry of pair plasmas, on the other hand, results in unique behaviour, a topic that has been intensively studied theoretically and numerically for decades, but experimental studies are still in the early stages of development. A levitated dipole device is now under construction to study magnetized low-energy, short-Debye-length electron–positron plasmas; this experiment, as well as a stellarator device that is in the planning stage, will be fuelled by a reactor-based positron source and make use of state-of-the-art positron cooling and storage techniques. Relativistic pair plasmas with very different parameters will be created using pair production resulting from intense laser–matter interactions and will be confined in a high-field mirror configuration. We highlight the differences between and similarities among these approaches, and discuss the unique physics insights that can be gained by these studies.

中文翻译:

实验室物理学的新前沿:磁化电子-正电子等离子体

我们在此描述了创建和研究磁化电子-正电子对等离子体的努力,这些等离子体在天体物理环境中的存在是公认的。由于等离子体、光束和激光物理学中的新方法和技术,此类系统的实验室化身变得越来越可能。迄今为止,在自然界和实验室中研究的传统磁化等离子体表现出许多不同的波类型,其中许多通常是不稳定的,并演变成湍流或剧烈的不稳定性。这些波的这种复杂性和不稳定性在很大程度上源于带正电和带负电的物质(离子和电子)之间的质量差异。另一方面,对等离子体的质量对称性导致了独特的行为,几十年来一直在理论上和数值上进行深入研究的主题,但实验研究仍处于发展的早期阶段。现在正在建造一个悬浮偶极子装置,以研究磁化的低能量、短德拜长度的电子-正电子等离子体;该实验以及处于规划阶段的仿星器装置将由基于反应堆的正电子源提供燃料,并利用最先进的正电子冷却和存储技术。具有非常不同参数的相对论对等离子体将通过强烈的激光-物质相互作用产生的对产生,并将被限制在高场镜配置中。我们强调了这些方法之间的差异和相似之处,并讨论了这些研究可以获得的独特的物理学见解。
更新日期:2020-11-18
down
wechat
bug