当前位置: X-MOL 学术SIAM J. Imaging Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal Transport Driven CycleGAN for Unsupervised Learning in Inverse Problems
SIAM Journal on Imaging Sciences ( IF 2.1 ) Pub Date : 2020-12-17 , DOI: 10.1137/20m1317992
Byeongsu Sim , Gyutaek Oh , Jeongsol Kim , Chanyong Jung , Jong Chul Ye

SIAM Journal on Imaging Sciences, Volume 13, Issue 4, Page 2281-2306, January 2020.
To improve the performance of classical generative adversarial networks (GANs), Wasserstein generative adversarial networks (WGANs) were developed as a Kantorovich dual formulation of the optimal transport (OT) problem using Wasserstein-1 distance. However, it was not clear how CycleGAN-type generative models can be derived from the OT theory. Here we show that a novel CycleGAN architecture can be derived as a Kantorovich dual OT formulation if a penalized least squares (PLS) cost with deep learning--based inverse path penalty is used as a transportation cost. One of the most important advantages of this formulation is that depending on the knowledge of the forward problem, distinct variations of CycleGAN architecture can be derived: for example, one with two pairs of generators and discriminators, and the other with only a single pair of generator and discriminator. Even for the two generator cases, we show that the structural knowledge of the forward operator can lead to a simpler generator architecture which significantly simplifies the neural network training. The new CycleGAN formulation, which we call the OT-CycleGAN, has been applied for various biomedical imaging problems, such as accelerated magnetic resonance imaging (MRI), super-resolution microscopy, and low-dose X-ray computed tomography (CT). Experimental results confirm the efficacy and flexibility of the theory.


中文翻译:

逆问题中无监督学习的最优运输驱动CycleGAN

SIAM影像科学杂志,第13卷,第4期,第2281-2306页,2020年1月。
为了提高经典生成对抗网络(GAN)的性能,Wasserstein生成对抗网络(WGAN)被开发为使用Wasserstein-1距离的最优运输(OT)问题的Kantorovich对偶公式。但是,尚不清楚如何从旧时理论推导CycleGAN型生成模型。在这里我们表明,如果将基于深度学习的逆最小路径罚分的惩罚最小二乘(PLS)成本用作运输成本,则可以将一种新颖的CycleGAN架构推导为Kantorovich对偶OT公式。此公式最重要的优点之一是,根据对前向问题的了解,可以得出CycleGAN体系结构的不同变化:例如,一个具有两对生成器和一个鉴别器的,另一个则只有一对生成器和鉴别器。即使对于这两种生成器情况,我们也表明,前向运算符的结构知识可以导致生成器结构更简单,从而大大简化了神经网络训练。新的CycleGAN配方(我们称为OT-CycleGAN)已应用于各种生物医学成像问题,例如加速磁共振成像(MRI),超分辨率显微镜和低剂量X射线计算机断层扫描(CT)。实验结果证实了该理论的有效性和灵活性。我们将其称为OT-CycleGAN,已应用于各种生物医学成像问题,例如加速磁共振成像(MRI),超分辨率显微镜和低剂量X射线计算机断层扫描(CT)。实验结果证实了该理论的有效性和灵活性。我们将其称为OT-CycleGAN,已应用于各种生物医学成像问题,例如加速磁共振成像(MRI),超分辨率显微镜和低剂量X射线计算机断层扫描(CT)。实验结果证实了该理论的有效性和灵活性。
更新日期:2020-12-18
down
wechat
bug