当前位置: X-MOL 学术Adv. Eng. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuron‐Gated Silicon Nanowire Field Effect Transistors to Follow Single Spike Propagation within Neuronal Network
Advanced Engineering Materials ( IF 3.6 ) Pub Date : 2020-12-17 , DOI: 10.1002/adem.202001226
Cécile Delacour 1 , Farida Veliev 1 , Thierry Crozes 1 , Guillaume Bres 1 , Julien Minet 1 , Irina Ionica 2 , Thomas Ernst 3 , Anne Briançon-Marjollet 4 , Mireille Albrieux 5 , Catherine Villard 1
Affiliation  

Silicon nanowire field effect transistors (SiNW‐FETs) provide a local probe for sensing neuronal activity at the subcellular scale, thanks to their nanometer size and ultrahigh sensitivity. The combination with micropatterning or microfluidic techniques to build model neurons networks above SiNW arrays could allow monitoring of spike propagation and tailor specific stimulations, being useful to investigate network communications at multiple scales, such as plasticity or computing processes. This versatile device could be useful in many research areas, including diagnosis, prosthesis, and health security. Herein, SiNW‐based arrays enable to record electrical signals from matured neurons, such as local field potential and unitary spike within ex vivo preparations and hippocampal neurons grown on chip respectively. Furthermore, the ability to guide neurites above the sensor array during 3 weeks of cultures is demonstrated and the propagation of spikes along cells is followed. The SiNW‐FETs are obtained by a top‐down approach with complementary metal oxide semiconductor (CMOS) technology, showing the possibility to implement them at the manufacturing level. These results confirm further the potentiality of the approach to follow spike propagation over large distances and at precise locations along neuronal cells, by providing a multiscale addressing at the nano and mesoscales.

中文翻译:

Neuron门控硅纳米线场效应晶体管遵循神经元网络内的单尖峰传播。

硅纳米线场效应晶体管(SiNW-FET)由于其纳米尺寸和超高灵敏度,提供了一种在亚细胞规模上感知神经元活动的局部探针。与微模式或微流技术相结合,可以在SiNW阵列上方构建模型神经元网络,从而可以监控尖峰传播并定制特定刺激,从而有助于研究多种规模的网络通信,例如可塑性或计算过程。这种多功能的设备可能在许多研究领域中有用,包括诊断,假体和健康安全性。在此,基于SiNW的阵列能够记录来自成熟神经元的电信号,例如离体制备物中的局部场电势和单位尖峰以及芯片上生长的海马神经元。此外,证明了在培养3周内将神经突引导到传感器阵列上方的能力,并跟踪了尖峰沿细胞的传播。SiNW-FET是通过自上而下的方法采用互补金属氧化物半导体(CMOS)技术获得的,这表明可以在制造级别实现它们。这些结果进一步证实了该方法的潜力,即通过提供纳米级和中尺度的多尺度寻址,可以跟踪长距离和沿神经元细胞精确位置的尖峰传播。显示了在制造级别实施它们的可能性。这些结果进一步证实了该方法的潜力,即通过提供纳米级和中尺度的多尺度寻址,可以跟踪长距离和沿神经元细胞精确位置的尖峰传播。显示了在制造级别实施它们的可能性。这些结果进一步证实了该方法的潜力,即通过提供纳米级和中尺度的多尺度寻址,可以跟踪长距离和沿神经元细胞精确位置的尖峰传播。
更新日期:2020-12-17
down
wechat
bug