当前位置: X-MOL 学术Int. J. Photoenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Study of Deep Neural Network Controller-Based Power Quality Improvement of Hybrid PV/Wind Systems by Using Smart Inverter
International Journal of Photoenergy ( IF 3.2 ) Pub Date : 2020-12-16 , DOI: 10.1155/2020/8891469
Adel Ab-BelKhair 1 , Javad Rahebi 1 , Abdulbaset Abdulhamed Mohamed Nureddin 1
Affiliation  

Presently, climate change and global warming are the most uncontrolled global challenges due to the extensive fossil fuel usage for power generation and transportation. Nowadays, most of the developed countries are concentrating on developing alternative resources; consequently, they did huge investments in research and development. In general, alternative energy resources including hydropower, solar power, and wind energy are not harmful to nature. Today, solar power and wind power are very popular alternative energy sources due to their enormous availability in nature. In this paper, the photovoltaic cell and wind energy systems are investigated under various weather conditions. Based on the findings, we developed an advanced intelligent controller system that tracks the maximum power point. The MPPT controller is a must for the renewable energy sources due to unpredictable weather conditions. The main objective of this paper is to propose a new algorithm that is based on deep neural network (DNN) and maximum power point tracking (MPPT), which was simulated in a MATLAB environment for photovoltaic (PV) and wind-based power generation systems. The development of an advanced DNN controller that improves the power quality and reduces THD value for the microgrid integration of hybrid PV/wind energy system was performed. The MATLAB simulation tool has been used to develop the proposed system and tested its performance in different operating situations. Finally, we analyzed the simulation results applying the IEEE 1547 standard.

中文翻译:

基于深度神经网络控制器的智能逆变器混合光伏/风能系统电能质量研究

目前,由于大量化石燃料用于发电和运输,气候变化和全球变暖是最不受控制的全球挑战。如今,大多数发达国家都在集中精力开发替代资源;因此,他们在研发方面进行了巨额投资。一般来说,包括水电、太阳能和风能在内的替代能源对自然是无害的。今天,太阳能和风能因其在自然界中的巨大可用性而成为非常受欢迎的替代能源。在本文中,光伏电池和风能系统在各种天气条件下进行了研究。基于这些发现,我们开发了一种先进的智能控制器系统,可以跟踪最大功率点。由于不可预测的天气条件,MPPT 控制器是可再生能源的必需品。本文的主要目的是提出一种基于深度神经网络 (DNN) 和最大功率点跟踪 (MPPT) 的新算法,该算法在 MATLAB 环境中针对光伏 (PV) 和风力发电系统进行仿真。 . 为混合光伏/风能系统的微电网集成开发了一种先进的 DNN 控制器,可提高电能质量并降低 THD 值。MATLAB 仿真工具已被用于开发所提出的系统并测试其在不同操作情况下的性能。最后,我们分析了应用 IEEE 1547 标准的仿真结果。本文的主要目的是提出一种基于深度神经网络 (DNN) 和最大功率点跟踪 (MPPT) 的新算法,该算法在 MATLAB 环境中针对光伏 (PV) 和风力发电系统进行仿真。 . 为混合光伏/风能系统的微电网集成开发了一种先进的 DNN 控制器,可提高电能质量并降低 THD 值。MATLAB 仿真工具已被用于开发所提出的系统并测试其在不同操作情况下的性能。最后,我们分析了应用 IEEE 1547 标准的仿真结果。本文的主要目的是提出一种基于深度神经网络 (DNN) 和最大功率点跟踪 (MPPT) 的新算法,该算法在 MATLAB 环境中针对光伏 (PV) 和风力发电系统进行仿真。 . 为混合光伏/风能系统的微电网集成开发了一种先进的 DNN 控制器,可提高电能质量并降低 THD 值。MATLAB 仿真工具已被用于开发所提出的系统并测试其在不同操作情况下的性能。最后,我们分析了应用 IEEE 1547 标准的仿真结果。为混合光伏/风能系统的微电网集成开发了一种先进的 DNN 控制器,可提高电能质量并降低 THD 值。MATLAB 仿真工具已被用于开发所提出的系统并测试其在不同操作情况下的性能。最后,我们分析了应用 IEEE 1547 标准的仿真结果。为混合光伏/风能系统的微电网集成开发了一种先进的 DNN 控制器,可提高电能质量并降低 THD 值。MATLAB 仿真工具已被用于开发所提出的系统并测试其在不同操作情况下的性能。最后,我们分析了应用 IEEE 1547 标准的仿真结果。
更新日期:2020-12-16
down
wechat
bug