当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Degradation modeling of poly-l-lactide acid (PLLA) bioresorbable vascular scaffold within a coronary artery
Nanotechnology Reviews ( IF 7.4 ) Pub Date : 2020-12-12 , DOI: 10.1515/ntrev-2020-0093
Shengmao Lin 1 , Pengfei Dong 2 , Changchun Zhou 3 , Luis Augusto P. Dallan 4 , Vladislav N. Zimin 4 , Gabriel T. R. Pereira 4 , Juhwan Lee 5 , Yazan Gharaibeh 5 , David L. Wilson 5 , Hiram G. Bezerra 6 , Linxia Gu 2
Affiliation  

Abstract In this work, a strain-based degradation model was implemented and validated to better understand the dynamic interactions between the bioresorbable vascular scaffold (BVS) and the artery during the degradation process. Integrating the strain-modulated degradation equation into commercial finite element codes allows a better control and visualization of local mechanical parameters. Both strut thinning and discontinuity of the stent struts within an artery were captured and visualized. The predicted results in terms of mass loss and fracture locations were validated by the documented experimental observations. In addition, results suggested that the heterogeneous degradation of the stent depends on its strain distribution following deployment. Degradation is faster at the locations with higher strains and resulted in the strut thinning and discontinuity, which contributes to the continuous mass loss, and the reduced contact force between the BVS and artery. A nonlinear relationship between the maximum principal strain of the stent and the fracture time was obtained, which could be transformed to predict the degradation process of the BVS in different mechanical environments. The developed computational model provided more insights into the degradation process, which could complement the discrete experimental data for improving the design and clinical management of the BVS.

中文翻译:

冠状动脉内聚丙交酯酸 (PLLA) 生物可吸收血管支架的降解模型

摘要 在这项工作中,实施并验证了基于应变的降解模型,以更好地了解降解过程中生物可吸收血管支架 (BVS) 与动脉之间的动态相互作用。将应变调制退化方程集成到商业有限元代码中,可以更好地控制和可视化局部机械参数。支架变细和动脉内支架的不连续性都被捕获并可视化。质量损失和断裂位置方面的预测结果通过记录的实验观察得到验证。此外,结果表明支架的异质降解取决于其展开后的应变分布。在应变较高的位置降解更快,导致支柱变细和不连续,这导致质量持续损失,以及 BVS 和动脉之间的接触力降低。获得了支架最大主应变与断裂时间之间的非线性关系,可以将其转化为预测BVS在不同力学环境下的降解过程。开发的计算模型提供了对降解过程的更多见解,可以补充离散实验数据,以改进 BVS 的设计和临床管理。获得了支架最大主应变与断裂时间之间的非线性关系,可以将其转化为预测不同力学环境下BVS的降解过程。开发的计算模型提供了对降解过程的更多见解,可以补充离散实验数据,以改进 BVS 的设计和临床管理。获得了支架最大主应变与断裂时间之间的非线性关系,可以将其转化为预测不同力学环境下BVS的降解过程。开发的计算模型提供了对降解过程的更多见解,可以补充离散实验数据,以改进 BVS 的设计和临床管理。
更新日期:2020-12-12
down
wechat
bug