当前位置: X-MOL 学术J. Anal. Methods Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Instrumental Techniques for Characterization of Molybdenum Disulphide Nanostructures
Journal of Analytical Methods in Chemistry ( IF 2.6 ) Pub Date : 2020-12-16 , DOI: 10.1155/2020/8896698
Kabelo E. Ramohlola 1 , Emmanuel I. Iwuoha 2 , Mpitloane J. Hato 1 , Kwena D. Modibane 1
Affiliation  

The excellent chemical and physical properties of materials (nanomaterials) with dimensions of less than 100 nm (nanometers) resulted in researchers and industrialists to have great interest in their discovery and applications in various systems/applications. As their sizes are reduced to nanoscale, these nanomaterials tend to possess exceptional properties differing from those of their bulk counterparts; hence, they have found applications in electronics and medicines. In order to apply them in those applications, there is a need to synthesise these nanomaterials and study their structural, optical, and electrochemical properties. Among several nanomaterials, molybdenum disulphide (MoS2) has received a great interest in energy applications due to its exceptional properties such as stability, conductivity, and catalytic activities. Hence, the great challenge lies in finding the state-of-the-art characterization techniques to reveal the different properties of MoS2 nanostructures with great accuracy. In this regard, there is a need to study and employ several techniques to accurately study the surface chemistry and physics of the MoS2 nanostructures. Hence, this review will comprehensively discuss a detailed literature survey on analytical techniques that can be used to study the chemical, physical, and surface properties of MoS2 nanostructures, namely, ultraviolet-visible spectroscopy (UV-vis), photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopies (SEM and TEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDS/X), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and electroanalytical methods which include linear sweep (LSV) and cyclic (CV) voltammetry and electrochemical impedance spectroscopy (EIS).

中文翻译:

表征二硫化钼纳米结构的仪器技术

尺寸小于100 nm(纳米)的材料(纳米材料)的出色的化学和物理特性使研究人员和工业家对其在各种系统/应用中的发现和应用产生了极大的兴趣。随着它们的尺寸减小到纳米级,这些纳米材料往往具有不同于其本体同类材料的优异性能。因此,他们发现了在电子和药物中的应用。为了将它们应用在那些应用中,需要合成这些纳米材料并研究它们的结构,光学和电化学性质。在几种纳米材料中,二硫化钼(MoS 2)由于其出色的性能,例如稳定性,电导率和催化活性,在能源应用领域引起了极大的兴趣。因此,最大的挑战在于寻找最先进的表征技术,以高度准确地揭示MoS 2纳米结构的不同特性。在这方面,需要研究和采用多种技术来准确地研究MoS 2纳米结构的表面化学和物理。因此,本综述将全面讨论有关可用于研究MoS 2的化学,物理和表面性质的分析技术的详细文献调查。 纳米结构,即紫外可见光谱(UV-vis),光致发光光谱(PL),傅里叶变换红外光谱(FTIR),拉曼光谱,飞行时间二次离子质谱(TOF-SIMS),X射线衍射(XRD),X射线光电子能谱(XPS),扫描和透射电子显微镜(SEM和TEM),原子力显微镜(AFM),能量色散X射线光谱(EDS / X),热重分析(TGA),微分扫描量热法(DSC)和电分析方法,包括线性扫描(LSV)和循环(CV)伏安法和电化学阻抗谱(EIS)。
更新日期:2020-12-16
down
wechat
bug