当前位置: X-MOL 学术SIAM J. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transport Phenomena in Biological Field Effect Transistors
SIAM Journal on Applied Mathematics ( IF 1.9 ) Pub Date : 2020-12-15 , DOI: 10.1137/19m1255495
Ryan M. Evans , Arvind Balijepalli , Anthony J. Kearsley

SIAM Journal on Applied Mathematics, Volume 80, Issue 6, Page 2586-2607, January 2020.
A mathematical model for simulating biological field effect transistor (Bio-FET) experiments is introduced. It takes the form of a nonlinear equation that describes evolution of reacting species concentration at the boundary coupled to a diffusion equation. Using analytic techniques, this coupled system of equations is reduced to a singular integrodifferential equation (IDE). A numerical approximation of this equation is developed that achieves greater than first-order accuracy in time and greater than second-order accuracy in space, despite the presence of a singular temporal convolution kernel and a discontinuous boundary condition. The mathematical model was validated using Bio-FET data, and stochastic regression was employed to separate signal from noise. Results show that our IDE provides a robust way of estimating important parameters such as diffusion coefficients and kinetic rate constants.


中文翻译:

生物场效应晶体管中的传输现象

SIAM应用数学杂志,第80卷,第6期,第2586-2607页,2020年1月。
介绍了用于模拟生物场效应晶体管(Bio-FET)实验的数学模型。它采用非线性方程式的形式,该方程式描述了与扩散方程耦合的边界处反应物种浓度的演变。使用分析技术,该耦合方程组可简化为奇异积分微分方程(IDE)。尽管存在奇异的时间卷积核和不连续的边界条件,但该方程的数值近似仍可达到在时间上大于一阶精度和在空间上大于二阶精度的效果。使用Bio-FET数据验证了数学模型,并采用随机回归将信号与噪声分离。
更新日期:2020-12-24
down
wechat
bug