当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving theQFactor of an Optical Atomic Clock Using Quantum Nondemolition Measurement
Physical Review X ( IF 12.5 ) Pub Date : 2020-12-15 , DOI: 10.1103/physrevx.10.041052
William Bowden , Alvise Vianello , Ian R. Hill , Marco Schioppo , Richard Hobson

Quantum nondemolition (QND) measurement is a remarkable tool for the manipulation of quantum systems. It allows specific information to be extracted while still preserving fragile quantum observables of the system. Here we apply cavity-based QND measurement to an optical lattice clock—a type of atomic clock with unrivaled frequency precision—preserving the quantum coherence of the atoms after readout with 80% fidelity. We apply this technique to stabilize the phase of an ultrastable laser to a coherent atomic state via a series of repeated QND measurements. We exploit the improved phase coherence of the ultrastable laser to interrogate a separate optical lattice clock, using a Ramsey spectroscopy time extended from 300 ms to 2 s. With this technique we maintain 95% contrast and observe a sevenfold increase in the clock’s Q factor to 1.7×1015.

中文翻译:

使用量子非爆破测量提高光学原子钟的Q因子

量子不爆破(QND)测量是操纵量子系统的杰出工具。它允许提取特定信息,同时仍保留系统的易碎量子可观察性。在这里,我们将基于腔的QND测量应用于光学晶格时钟(一种无与伦比的频率精度的原子钟),以80%的保真度保留读出后原子的量子相干性。我们应用此技术通过一系列重复的QND测量,将超稳定激光的相位稳定到相干原子态。我们使用拉姆西光谱时间从300毫秒延长至2 s,利用超稳定激光的改进相干性来询问单独的光学晶格时钟。使用这种技术,我们可以保持95%的对比度,并观察到时钟的七倍增加 因素 1.7×1015
更新日期:2020-12-15
down
wechat
bug