当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Current challenges and potential directions towards precision microscale additive manufacturing – Part III: Energy induced deposition and hybrid electrochemical processes
Precision Engineering ( IF 3.6 ) Pub Date : 2020-12-15 , DOI: 10.1016/j.precisioneng.2020.12.013
Samira Chizari , Lucas A. Shaw , Dipankar Behera , Nilabh K. Roy , Ximeng Zheng , Robert M. Panas , Jonathan B. Hopkins , Shih-Chi Chen , Michael A. Cullinan

The Part III of the four-part series of articles discusses the challenges and opportunities in microscale additive manufacturing processes, specifically focusing on energy-induced deposition and electrochemical processes. Compared to the direct ink write (DIW) and laser-based processes, the energy-induced deposition methods can fabricate high-resolution, high aspect ratio and complex parts, while the hybrid electrochemical process can be used to fabricate complex parts using a wide range of conductive and photoactive materials. However, the volumetric throughput of these processes is lower than their DIW and laser-based counterparts. The processes that have been explored in this process are Focused-ion Beam Induced Deposition (FIBID), Laser Chemical Vapor Deposition (LCVD), Menicus-confined Electrodeposition (MCED) and Laser-Enabled Electrochemical Printing (LECP). The range of processable materials, feature-size resolution, geometry and volumetric throughput are used as factors to evaluate the current state-of-the-art for these processes. Novel approaches have been proposed in the article to address these challenges associated with microscale AM processes.



中文翻译:

精密微米级增材制造的当前挑战和潜在方向–第三部分:能量诱导沉积和混合电化学工艺

由四部分组成的系列文章的第三部分讨论了微型增材制造工艺中的挑战和机遇,特别关注能量诱导的沉积和电化学工艺。与直接墨水写入(DIW)和基于激光的工艺相比,能量诱导沉积方法可制造高分辨率,高纵横比和复杂零件,而混合电化学工艺可广泛用于制造复杂零件导电和光敏材料。但是,这些工艺的体积通量低于其DIW和基于激光的工艺。在此过程中探索的过程是聚焦离子束诱导沉积(FIBID),激光化学气相沉积(LCVD),弯液限制电沉积(MCED)和启用激光的电化学印刷(LECP)。可处理材料的范围,特征尺寸分辨率,几何形状和体积通过量被用作评估这些过程的当前技术水平的因素。本文中提出了新颖的方法来解决与微型AM过程相关的挑战。

更新日期:2020-12-18
down
wechat
bug