当前位置: X-MOL 学术Radiat. Eff. Defects Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wet chemically prepared terbium activated sodium calcium chlorosulfate phosphor for solid state lighting industry
Radiation Effects and Defects in Solids ( IF 1 ) Pub Date : 2020-12-14 , DOI: 10.1080/10420150.2020.1855179
Kena Dubey 1 , Abhijeet R. Kadam 2 , Nahida Baig 3 , N. S. Dhoble 4 , S. J. Dhoble 2
Affiliation  

ABSTRACT

Rare earth ion plays an important role in the solid state lighting industry. Here, the terbium (III) ion doped sodium calcium chlorosulfate phosphor was prepared via wet chemical method. Structure, bonding between each element of the sample and morphology of the sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. XRD study shows the crystalline nature of the phosphor materials prepared at low temperature. Photoluminescence study of prepared phosphor was done using SHIMADZU Spectrofluorophotometer RF-5301 PC with a xenon lamp as the excitation source. The excitation spectra are obtained between 280 and 430 nm ranges on doping of terbium (III) ion. Among all these transitions excitation at 380 nm is strong excitation owing to 7F65G6 transition. The emissions from terbium (III) ions are at 416, 437, 490 and 545, 586, 621 nm. These emissions are attributed to 5D37F5 (417 nm), 5D37F4 (437 nm), 5D47F6 (491 nm) and 5D47F5 (545 nm), 5D47F4 (588 nm), 5D4 → 7F3 (624 nm) transitions of terbium (III) ions. Among these strong emission peak appears in green region at 545 nm.



中文翻译:

固态照明工业用湿法化学制备铽活化氯硫酸钠荧光粉

摘要

稀土离子在固态照明行业中扮演着重要的角色。在这里,铽(III)离子掺杂的钠钙氯代硫酸钙荧光粉是通过湿化学法制备的。使用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 分析样品的结构、每个元素之间的键合和样品的形貌,这表明样品以众所周知的结构结晶。XRD 研究显示了在低温下制备的磷光体材料的结晶性质。使用SHIMADZU 荧光分光光度计RF-5301 PC 和氙灯作为激发源对制备的荧光粉进行光致发光研究。激发光谱是在 280 和 430 nm 范围内对铽 (III) 离子进行掺杂获得的。在 380 nm 的所有这些跃迁激发中,强激发是由于7 F 65 G 6过渡。铽 (III) 离子的发射波长为 416、437、490 和 545、586、621 nm。这些排放归因于5 D 37 F 5 (417 nm)、5 D 37 F 4 (437 nm)、5 D 47 F 6 (491 nm) 和5 D 47 F 5 (545 nm), 5 D 47 F 4 (588 nm),铽 (III) 离子的5 D 4 → 7F 3 (624 nm) 跃迁。其中,545 nm 处的绿色区域出现强发射峰。

更新日期:2020-12-14
down
wechat
bug