当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Capability of Superspheroids for Modeling PARASOL Observations Under Dusty‐Sky Conditions
Journal of Geophysical Research: Atmospheres ( IF 4.4 ) Pub Date : 2020-12-12 , DOI: 10.1029/2020jd033310
W. Lin 1 , L. Bi 1 , F. Weng 2 , Z. Li 3 , O. Dubovik 4
Affiliation  

A comprehensive dust‐particle geometry model is highly required for accurate computations of optical parameters in radiative transfer simulations and relevant remote sensing applications. In this study, a superspheroidal model is proposed for simulating polarized radiation at the top of the atmosphere (TOA) under dusty‐sky conditions. The superspheroidal model has one more degree of freedom than the spheroidal model. Sensitivity studies are first conducted to investigate how the additional freedom in the superspheroidal dust model affects the polarized signals at the TOA followed by an examination of the impact of particle size, complex refractive index, and surface properties on these polarized signals. The applicability of the superspheroidal model is then assessed for 11 selected dust events in three main dust source regions (namely, North Africa, Middle East, and the Taklamakan Desert). Specifically, the normalized polarized radiance as observed by the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) are compared with simulations from an adding‐doubling vector radiative transfer model. It is found that the concave superspheroidal model with large roundness parameters achieves favorable performances in fitting the angular distribution of the PARASOL polarized radiance. The optimal roundness parameter is found to be 2.6–3.0 and is consistent with recent comparison of the simulated scattering matrices and their laboratory measurement counterparts. These findings support the potential applicability of the superspheroidal model for polarized remote sensing applications.

中文翻译:

超球体在多尘天空条件下建模PARASOL观测值的能力

在辐射传输模拟和相关遥感应用中,要精确计算光学参数,非常需要一个全面的尘埃-粒子几何模型。在这项研究中,提出了一个超球体模型,用于模拟尘土飞扬的天空条件下大气(TOA)顶部的极化辐射。超球形模型比球形模型具有更多的自由度。首先进行敏感性研究,以研究超球形粉尘模型中的附加自由度如何影响TOA处的偏振信号,然后检查粒径,复折射率和表面性质对这些偏振信号的影响。然后针对三个主要粉尘源区域(即,北非,中东和塔克拉玛干沙漠)。具体而言,将通过大气科学的反射率的偏振和各向异性与激光雷达的观测结果(PARASOL)观察到的归一化偏振辐射与加倍矢量辐射传输模型的模拟进行了比较。发现具有大圆度参数的凹超球体模型在拟合PARASOL偏振辐射的角度分布方面取得了良好的性能。最佳圆度参数为2.6–3.0,与模拟散射矩阵及其实验室测量值的最新比较结果一致。这些发现支持超球体模型在极化遥感应用中的潜在适用性。具体而言,将通过大气科学的反射率的偏振和各向异性与激光雷达的观测结果(PARASOL)观察到的归一化偏振辐射与加倍矢量辐射传输模型的模拟进行了比较。发现具有大圆度参数的凹超球体模型在拟合PARASOL偏振辐射的角度分布方面取得了良好的性能。最佳圆度参数为2.6–3.0,与模拟散射矩阵及其实验室测量值的最新比较结果一致。这些发现支持超球体模型在极化遥感应用中的潜在适用性。具体而言,将通过大气科学的反射率的偏振和各向异性与激光雷达的观测结果(PARASOL)观察到的归一化偏振辐射与加倍矢量辐射传输模型的模拟进行了比较。发现具有大圆度参数的凹超球体模型在拟合PARASOL偏振辐射的角度分布方面取得了良好的性能。最佳圆度参数为2.6–3.0,与模拟散射矩阵及其实验室测量值的最新比较结果一致。这些发现支持超球体模型在极化遥感应用中的潜在适用性。将通过大气科学的反射率的偏振和各向异性与激光雷达的观测结果(PARASOL)观察到的归一化偏振辐射与加倍矢量辐射传输模型的模拟进行了比较。发现具有大圆度参数的凹超球体模型在拟合PARASOL偏振辐射的角度分布方面取得了良好的性能。最佳圆度参数为2.6–3.0,与模拟散射矩阵及其实验室测量值的最新比较结果一致。这些发现支持超球体模型在极化遥感应用中的潜在适用性。将通过大气科学的反射率的偏振和各向异性与激光雷达的观测结果(PARASOL)观察到的归一化偏振辐射与加倍矢量辐射传输模型的模拟进行了比较。发现具有大圆度参数的凹超球体模型在拟合PARASOL偏振辐射的角度分布方面取得了良好的性能。最佳圆度参数为2.6–3.0,与模拟散射矩阵及其实验室测量值的最新比较结果一致。这些发现支持超球体模型在极化遥感应用中的潜在适用性。
更新日期:2021-01-07
down
wechat
bug