当前位置: X-MOL 学术J. Loss Prev. Process. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High efficiency of the NH4H2PO4/Mg(OH)2 composite for guaranteeing safety of wood production
Journal of Loss Prevention in the Process Industries ( IF 3.5 ) Pub Date : 2020-12-13 , DOI: 10.1016/j.jlp.2020.104364
Li Hangchen , Shen Xiaohui , Guo Xinxin , Li Shunchao , Zhang Han , Zhang Chendong , Hua Min , Pan Xuhai

Currently, China's timber industry is in high demand with the development of real estate. However, there is a certain fire hazard in the production process of wood manufacturing. Once a fire occurs, the fire is violent and the spread is rapid. Therefore, to improve the safety of its production process, ammonium dihydrogen phosphate and magnesium hydroxide were selected to prepare a new composite superfine dry powder, which was denoted as the NH4H2PO4/Mg(OH)2 composite. Furthermore, to figure out dry powders' extinction effect on Class A fire, the wood-crib fire suppression effect of the NH4H2PO4/Mg(OH)2 composite was test, and then compared with that of ultrafine dry powder (UDP) and commercial ABC dry powder (C-ABC) in a 1 m³ chamber. Three parameters of the fire extinguishing process, namely flame extinction time, powder consumption and temperature drop were adopted to measure the fire suppression performance. The results demonstrated that UDP and C-ABC both had a larger flame extinction time and powder consumption than the NH4H2PO4/Mg(OH)2 composite. Besides, a fire (wood cribs) can be extinguished by the NH4H2PO4/Mg(OH)2 composite with the fastest temperature drop and a much-improved toxic gas suppression ability. In short, the NH4H2PO4/Mg(OH)2 composite can better guarantee the safety of the wood processing production process. Moreover, the reasons for performance advantages of the NH4H2PO4/Mg(OH)2 composite were discussed.

更新日期:2021-01-06
down
wechat
bug