当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Determination of Vacuum Electronic Device Stability
IEEE Transactions on Plasma Science ( IF 1.5 ) Pub Date : 2020-12-01 , DOI: 10.1109/tps.2020.3039119
Igor A. Chernyavskiy , Thomas M. Antonsen , Alexander N. Vlasov , Baruch Levush

We present a new approach to the study of the stability of vacuum electronic devices (VEDs) using the Naval Research Laboratory (NRL) large-signal code TESLA-Z. The approach combines a precomputed complex impedance matrix, $\hat {Z}$ , describing the structure with a TESLA-Z computed admittance matrix, $\hat {Y}_{ \boldsymbol {bt}}$ , characterizing the electron beam and beam tunnel. The gain matrix $\hat {G}$ for a given device then can be found as the product of the reduced $Z$ -matrix of the structure and admittance matrix $\hat {Y}_{ \boldsymbol {bt}}$ of the beam tunnel. Subsequent analysis of the eigenvalues of the gain matrix $\hat {G}$ using Nyquist’s method determines the stability of the device. We discuss the details of the new algorithm and illustrate its application to an experimental G-band serpentine TWT.

中文翻译:

真空电子器件稳定性的数值测定

我们提出了一种使用海军研究实验室 (NRL) 大信号代码 TESLA-Z 研究真空电子器件 (VED) 稳定性的新方法。该方法结合了预先计算的复阻抗矩阵, $\hat {Z}$ ,用 TESLA-Z 计算的导纳矩阵描述结构, $\hat {Y}_{ \boldsymbol {bt}}$ ,表征电子束和束隧道。增益矩阵 $\hat {G}$ 对于给定的设备,然后可以找到作为减少的产品 $Z$ -结构矩阵和导纳矩阵 $\hat {Y}_{ \boldsymbol {bt}}$ 梁隧道。增益矩阵特征值的后续分析 $\hat {G}$ 使用 Nyquist 方法确定设备的稳定性。我们讨论了新算法的细节,并说明了它在实验性 G 波段蛇形 TWT 中的应用。
更新日期:2020-12-01
down
wechat
bug