当前位置: X-MOL 学术IEEE Trans. Device Mat Reliab. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of Gamma-ray Radiation on DC and RF Performance of 10-nm Bulk N-channel FinFETs
IEEE Transactions on Device and Materials Reliability ( IF 2 ) Pub Date : 2020-12-01 , DOI: 10.1109/tdmr.2020.3033880
K. Aditya , R. Singh , M. Kumar , R. Vega , A. Dixit

In this article, the impact of gamma-ray radiation on DC and RF response of 10-nm bulk n-channel FinFETs is investigated. Firstly, the radiation tolerance of these devices under DC measurement conditions is reported as various layout level device parameters, such as the gate length ( $L_{G}$ ), number of fins ( $N_{FIN}$ ), and number of fingers ( $N_{FINGER}$ ) are scaled. Then for the first time, the impact of gamma-ray radiation on small-signal RF response of the 10-nm bulk FinFETs is reported, which includes some of the RF figures-of-merit (FOM), such as, the input transconductance, intrinsic current gain, intrinsic voltage gain, and unilateral power gain. Furthermore, the effect of device geometry scaling on maximum oscillation frequency, $f_{MAX}$ , degradation due to gamma-ray radiation is reported. DC results show that long channel devices with small $N_{FIN}$ and large $N_{FINGER}$ are least impacted by gamma-ray radiation as opposed to short channel devices with large $N_{FIN}$ and small $N_{FINGER}$ . The RF results show that gamma-ray radiation causes major degradation (~ 40%) in $f_{MAX}$ , while the cut-off frequency, $f_{T}$ remains mostly unchanged. Finally, an empirical model is developed to predict the degradation in $f_{MAX}$ with changing device geometries and gamma-ray radiation dose.

中文翻译:

伽马射线辐射对 10 纳米体 N 沟道 FinFET 直流和射频性能的影响

在本文中,研究了伽马射线辐射对 10 纳米体 n 沟道 FinFET 的 DC 和 RF 响应的影响。首先,这些器件在 DC 测量条件下的辐射容限被报告为各种布局级器件参数,例如栅极长度( $L_{G}$ ), 鳍片数量 ( $N_{FIN}$ ),以及手指的数量 ( $N_{手指}$ ) 进行缩放。然后首次报道了伽马射线辐射对 10 纳米体 FinFET 的小信号 RF 响应的影响,其中包括一些 RF 品质因数 (FOM),例如输入跨导、固有电流增益、固有电压增益和单边功率增益。此外,器件几何尺寸缩放对最大振荡频率的影响, $f_{MAX}$ , 报告了由于伽马射线辐射引起的降解。DC 结果表明,长通道器件具有小 $N_{FIN}$ 和大 $N_{手指}$ 受伽马射线辐射的影响最小,而不是具有大尺寸的短通道器件 $N_{FIN}$ 和小 $N_{手指}$ . RF 结果表明,伽马射线辐射会导致严重退化 (~ 40%) $f_{MAX}$ ,而截止频率, $f_{T}$ 基本保持不变。最后,开发了一个经验模型来预测在 $f_{MAX}$ 随着设备几何形状和伽马射线辐射剂量的变化。
更新日期:2020-12-01
down
wechat
bug