当前位置: X-MOL 学术Adv. Mater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bending of Nonconforming Thin Plates Based on the Mixed-Order Manifold Method with Background Cells for Integration
Advances in Materials Science and Engineering ( IF 2.098 ) Pub Date : 2020-12-12 , DOI: 10.1155/2020/6681214
Xin Qu 1 , Lijun Su 2 , Zhijun Liu 3, 4 , Xingqian Xu 5 , Fangfang Diao 6 , Wei Li 7
Affiliation  

As it is very difficult to construct conforming plate elements and the solutions achieved with conforming elements yield inferior accuracy to those achieved with nonconforming elements on many occasions, nonconforming elements, especially Adini’s element (ACM element), are often recommended for practical usage. However, the convergence, good numerical accuracy, and high computing efficiency of ACM element with irregular physical boundaries cannot be achieved using either the finite element method (FEM) or the numerical manifold method (NMM). The mixed-order NMM with background cells for integration was developed to analyze the bending of nonconforming thin plates with irregular physical boundaries. Regular meshes were selected to improve the convergence performance; background cells were used to improve the integration accuracy without increasing the degrees of freedom, retaining the efficiency as well; the mixed-order local displacement function was taken to improve the interpolation accuracy. With the penalized formulation fitted to the NMM for Kirchhoff’s thin plate bending, a new scheme was proposed to deal with irregular domain boundaries. Based on the present computational framework, comparisons with other studies were performed by taking several typical examples. The results indicated that the solutions achieved with the proposed NMM rapidly converged to the analytical solutions and their accuracy was vastly superior to that achieved with the FEM and the traditional NMM.

中文翻译:

基于背景单元混合阶流形方法的不合格薄板弯曲

由于构造合格的板式元件非常困难,并且合格元件所获得的解决方案的精度要比不合格元件在许多情况下要低,因此,通常建议实际使用不合格元件,尤其是Adini元件(ACM元件)。但是,使用有限元方法(FEM)或数值流形方法(NMM)都无法实现具有不规则物理边界的ACM元素的收敛性,良好的数值精度和较高的计算效率。开发了具有用于集成的背景单元的混合阶NMM,以分析具有不规则物理边界的不合格薄板的弯曲。选择规则网格以提高收敛性能;背景单元用于提高积分精度,而不会增加自由度,同时也保持了效率。为了提高插值精度,采用了混合阶局部位移函数。通过适用于Kirchhoff薄板弯曲的NMM的惩罚公式,提出了一种解决不规则区域边界的新方案。在当前的计算框架的基础上,通过举几个典型的例子与其他研究进行了比较。结果表明,使用所提出的NMM所实现的解决方案迅速收敛于分析解决方案,并且其精度大大优于使用FEM和传统NMM所实现的解决方案。采用混合阶局部位移函数来提高插值精度。通过适用于Kirchhoff薄板弯曲的NMM的惩罚公式,提出了一种解决不规则区域边界的新方案。在当前的计算框架的基础上,通过举几个典型的例子与其他研究进行了比较。结果表明,使用所提出的NMM所实现的解决方案迅速收敛于分析解决方案,并且其精度大大优于使用FEM和传统NMM所实现的解决方案。采用混合阶局部位移函数来提高插值精度。通过适用于Kirchhoff薄板弯曲的NMM的惩罚公式,提出了一种解决不规则区域边界的新方案。在当前的计算框架的基础上,通过举几个典型的例子与其他研究进行了比较。结果表明,使用所提出的NMM所实现的解决方案迅速收敛于分析解决方案,并且其精度大大优于使用FEM和传统NMM所实现的解决方案。通过列举几个典型的例子与其他研究进行了比较。结果表明,使用所提出的NMM所实现的解决方案迅速收敛于分析解决方案,并且其精度大大优于使用FEM和传统NMM所实现的解决方案。通过列举几个典型的例子与其他研究进行了比较。结果表明,使用所提出的NMM所实现的解决方案迅速收敛于分析解决方案,并且其精度大大优于使用FEM和传统NMM所实现的解决方案。
更新日期:2020-12-12
down
wechat
bug