当前位置: X-MOL 学术Cold Reg. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Subzero temperature dependence of electrical conductivity for permafrost geophysics
Cold Regions Science and Technology ( IF 4.1 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.coldregions.2020.103214
Greg A. Oldenborger

Abstract Temperature dependence of the electrical conductivity of natural waters due to viscosity-based reduction in ionic mobility is well-established for unfrozen conditions. For cold regions, a model for the temperature dependence of electrolyte conductivity at subzero temperatures is required for geophysical studies of permafrost terrain, for which salinity and tension forces may result in freezing-point depression. Extension of the linear temperature model for unfrozen conditions has been applied to geophysical studies of permafrost, but has not been experimentally validated. The temperature dependence of electrical conductivity is measured at subzero temperatures, but above the depressed freezing point for NaCl solutions at a range of concentrations from seawater to brine. Measurements show near-linear dependence of electrical conductivity on temperature down to the lowest experimental temperature of ˗9 °C with no distinct change in behavior observed for subzero temperatures. Given the observed temperature dependence, the linear temperature-conductivity compensation equation is extended to ˗9 °C with a temperature compensation coefficient of 0.019 °C˗1 for a reference temperature of 20 °C with subzero prediction errors of 1–6%. This equation can be used to compensate for temperature dependence of electrical conductivity with reasonable accuracy for geophysical experiments in permafrost terrain. Subzero accuracy is improved by adopting a quadratic temperature compensation equation that accounts for an observed increase in nonlinear behavior at lower temperatures distant from the reference.

中文翻译:

永久冻土地球物理学中电导率的零下温度依赖性

摘要 由于基于粘度的离子迁移率降低,天然水的电导率的温度依赖性在未结冰的条件下是公认的。对于寒冷地区,永久冻土地形的地球物理研究需要一个在零度以下温度下电解质电导率的温度依赖性模型,其中盐度和张力可能导致冰点降低。解冻条件下线性温度模型的扩展已应用于多年冻土的地球物理研究,但尚未经过实验验证。电导率的温度依赖性是在零度以下的温度下测量的,但高于从海水到盐水的一系列浓度的 NaCl 溶液的低凝固点。测量结果表明,电导率与温度接近线性相关,低至 ˗9 °C 的最低实验温度,在零下温度下没有观察到明显的行为变化。鉴于观察到的温度依赖性,线性温度-电导率补偿方程扩展到 ˗9 °C,温度补偿系数为 0.019 °C˗1,参考温度为 20 °C,零下预测误差为 1–6%。该方程可用于以合理的精度补偿多年冻土地区地球物理实验的电导率的温度依赖性。通过采用二次温度补偿方程提高了零下精度,该方程解释了在远离参考的较低温度下观察到的非线性行为的增加。
更新日期:2021-02-01
down
wechat
bug