当前位置: X-MOL 学术J. Royal Soc. Interface › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unsupervised learning of control signals and their encodings in Caenorhabditis elegans whole-brain recordings
Journal of The Royal Society Interface ( IF 3.9 ) Pub Date : 2020-12-01 , DOI: 10.1098/rsif.2020.0459
Charles Fieseler 1 , Manuel Zimmer 2, 3 , J Nathan Kutz 4
Affiliation  

A major goal of computational neuroscience is to understand the relationship between synapse-level structure and network-level functionality. Caenorhabditis elegans is a model organism to probe this relationship due to the historic availability of the synaptic structure (connectome) and recent advances in whole brain calcium imaging techniques. Recent work has applied the concept of network controllability to neuronal networks, discovering some neurons that are able to drive the network to a certain state. However, previous work uses a linear model of the network dynamics, and it is unclear if the real neuronal network conforms to this assumption. Here, we propose a method to build a global, low-dimensional model of the dynamics, whereby an underlying global linear dynamical system is actuated by temporally sparse control signals. A key novelty of this method is discovering candidate control signals that the network uses to control itself. We analyse these control signals in two ways, showing they are interpretable and biologically plausible. First, these control signals are associated with transitions between behaviours, which were previously annotated via expert-generated features. Second, these signals can be predicted both from neurons previously implicated in behavioural transitions but also additional neurons previously unassociated with these behaviours. The proposed mathematical framework is generic and can be generalized to other neurosensory systems, potentially revealing transitions and their encodings in a completely unsupervised way.

中文翻译:

秀丽隐杆线虫全脑记录中控制信号及其编码的无监督学习

计算神经科学的一个主要目标是了解突触级结构和网络级功能之间的关系。由于突触结构(连接组)的历史可用性和全脑钙成像技术的最新进展,秀丽隐杆线虫是探索这种关系的模式生物。最近的工作将网络可控性的概念应用于神经元网络,发现了一些能够将网络驱动到某种状态的神经元。然而,之前的工作使用了网络动力学的线性模型,目前还不清楚真实的神经元网络是否符合这一假设。在这里,我们提出了一种建立全局低维动力学模型的方法,其中潜在的全局线性动力学系统由时间稀疏的控制信号驱动。这种方法的一个关键创新是发现网络用来控制自身的候选控制信号。我们以两种方式分析这些控制信号,表明它们是可解释的且在生物学上是合理的。首先,这些控制信号与行为之间的转换相关联,这些转换之前是通过专家生成的特征进行注释的。其次,这些信号既可以从先前与行为转变有关的神经元预测,也可以从先前与这些行为无关的其他神经元预测。所提出的数学框架是通用的,可以推广到其他神经感觉系统,可能以完全无监督的方式揭示转换及其编码。我们以两种方式分析这些控制信号,表明它们是可解释的且在生物学上是合理的。首先,这些控制信号与行为之间的转换相关联,这些转换之前是通过专家生成的特征进行注释的。其次,这些信号既可以从先前与行为转变有关的神经元预测,也可以从先前与这些行为无关的其他神经元预测。所提出的数学框架是通用的,可以推广到其他神经感觉系统,可能以完全无监督的方式揭示转换及其编码。我们以两种方式分析这些控制信号,表明它们是可解释的且在生物学上是合理的。首先,这些控制信号与行为之间的转换相关联,这些转换之前是通过专家生成的特征进行注释的。其次,这些信号既可以从先前与行为转变有关的神经元预测,也可以从先前与这些行为无关的其他神经元预测。所提出的数学框架是通用的,可以推广到其他神经感觉系统,可能以完全无监督的方式揭示转换及其编码。这些信号既可以从先前与行为转变有关的神经元预测,也可以从先前与这些行为无关的其他神经元预测。所提出的数学框架是通用的,可以推广到其他神经感觉系统,可能以完全无监督的方式揭示转换及其编码。这些信号既可以从先前与行为转变有关的神经元预测,也可以从先前与这些行为无关的其他神经元预测。所提出的数学框架是通用的,可以推广到其他神经感觉系统,可能以完全无监督的方式揭示转换及其编码。
更新日期:2020-12-01
down
wechat
bug