当前位置: X-MOL 学术Discret. Dyn. Nat. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a Sir Epidemic Model for the COVID-19 Pandemic and the Logistic Equation
Discrete Dynamics in Nature and Society ( IF 1.4 ) Pub Date : 2020-12-09 , DOI: 10.1155/2020/1382870
Manuel De la Sen 1 , Asier Ibeas 2
Affiliation  

The main objective of this paper is to describe and interpret an SIR (Susceptible-Infectious-Recovered) epidemic model though a logistic equation, which is parameterized by a Malthusian parameter and a carrying capacity parameter, both being time-varying, in general, and then to apply the model to the COVID-19 pandemic by using some recorded data. In particular, the Malthusian parameter is related to the growth rate of the infection solution while the carrying capacity is related to its maximum reachable value. The quotient of the absolute value of the Malthusian parameter and the carrying capacity fixes the transmission rate of the disease in the simplest version of the epidemic model. Therefore, the logistic version of the epidemics’ description is attractive since it offers an easy interpretation of the data evolution especially when the pandemic outbreaks. The SIR model includes recruitment, demography, and mortality parameters, and the total population minus the recovered population is not constant though time. This makes the current logistic equation to be time-varying. An estimation algorithm, which estimates the transmission rate through time from the discrete-time estimation of the parameters of the logistic equation, is proposed. The data are picked up at a set of samples which are either selected by the adaptive sampling law or allocated at constant intervals between consecutive samples. Numerical simulated examples are also discussed.

中文翻译:

关于COVID-19大流行和Logistic方程的Sir流行病模型

本文的主要目的是通过逻辑方程来描述和解释SIR(易感传染病)模型,该方程由马尔萨斯参数和承载力参数(通常都是随时间变化的)参数化,并且然后通过使用一些记录的数据将模型应用于COVID-19大流行。特别地,马尔萨斯参数与感染溶液的生长速率有关,而承载能力与其最大可达到值有关。在最简单的流行病模型中,马尔萨斯参数的绝对值与承载力的比值决定了疾病的传播率。因此,流行病描述的逻辑版本很有吸引力,因为它可以轻松解释数据演变,尤其是在大流行爆发时。SIR模型包括募集,人口统计学和死亡率参数,总人口减去恢复的人口虽然时间并不恒定。这使得当前逻辑方程式是随时间变化的。提出了一种估计算法,该算法从对数方程参数的离散时间估计中,估计随时间的传输速率。数据是在一组采样中采集的,这些采样要么通过自适应采样定律选择,要么在连续采样之间以恒定间隔分配。还讨论了数值模拟示例。总人口减去恢复的人口虽然不是恒定的。这使得当前逻辑方程式是随时间变化的。提出了一种估计算法,该算法从对数方程参数的离散时间估计中,估计随时间的传输速率。数据是在一组采样中采集的,这些采样要么通过自适应采样定律选择,要么在连续采样之间以恒定间隔分配。还讨论了数值模拟示例。总人口减去恢复的人口虽然不是恒定的。这使得当前逻辑方程式是随时间变化的。提出了一种估计算法,该算法从对数方程参数的离散时间估计中,估计随时间的传输速率。数据是在一组采样中采集的,这些采样要么通过自适应采样定律选择,要么在连续采样之间以恒定间隔分配。还讨论了数值模拟示例。数据是在一组采样中采集的,这些采样要么通过自适应采样定律选择,要么在连续采样之间以恒定间隔分配。还讨论了数值模拟示例。数据是在一组采样中采集的,这些采样要么通过自适应采样定律选择,要么在连续采样之间以恒定间隔分配。还讨论了数值模拟示例。
更新日期:2020-12-09
down
wechat
bug