当前位置: X-MOL 学术Crop Pasture Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Epichloë gansuensis endophyte on rhizosphere bacterial communities and nutrient concentrations and ratios in the perennial grass species Achnatherum inebrians during three growth seasons
Crop & Pasture Science ( IF 1.9 ) Pub Date : 2020-12-07 , DOI: 10.1071/cp20145
Wenpeng Hou , Chao Xia , Michael J. Christensen , Jianfeng Wang , Xiuzhang Li , Tao Chen , Zhibiao Nan

Achnatherum inebrians is an invasive perennial grass widespread in natural grasslands of north-west China and plays an important role in grassland ecological restoration. The presence of the seed-borne endophytic fungus Epichloë gansuensis in A. inebrians promotes grass growth, increases resistance to abiotic stress, and affects the rhizosphere microbial community of host plants. However, the relationships among E. gansuensis, rhizosphere bacteria and plant contents of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) during different growing seasons are not clear. We examined changes in the rhizosphere bacterial community and in nutrient contents and ratios in A. inebrians with (E+) and without (E−) E. gansuensis in May, August and December. The Shannon diversity index was higher for rhizosphere bacteria of E+ than E− plants in the three different seasons. Leaf C, N and P contents and root P and K contents were higher in E+ than E− plants in May, and leaf K and root C were higher in E+ than E− plants in August. Leaf C : N ratios were lower in E+ than E− plants in December, and leaf C : K ratios were lower in E+ than E− plants in August and December. In addition, our results indicate significant interactions among rhizosphere bacteria, C, N, P and K contents, and endophyte treatment in three different seasons. In conclusion, E. gansuensis enhanced the C, N, P and K contents of host plants, and affected nutrient ratios of A. inebrians probably by increasing rhizosphere bacterial diversity and altering rhizosphere bacterial community structure. This study provides new findings on the ecological function of the endophyte E. gansuensis, including its potential role in enhancing soil fertility. The improvements in soil fertility were utilised in extrapolating to forage grass–endophyte associations.

更新日期:2020-12-08
down
wechat
bug