当前位置: X-MOL 学术J. Comb. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intersecting and 2‐intersecting hypergraphs with maximal covering number: The Erdős–Lovász theme revisited
Journal of Combinatorial Designs ( IF 0.7 ) Pub Date : 2020-12-08 , DOI: 10.1002/jcd.21763
János Barát 1, 2
Affiliation  

Erdős and Lovasz noticed that an $r$-uniform intersecting hypergraph $H$ with maximal covering number, that is $\tau(H)=r$, must have at least $\frac{8}{3}r-3$ edges. There has been no improvement on this lower bound for 45 years. We try to understand the reason by studying some small cases to see whether the truth lies very close to this simple bound. Let $q(r)$ denote the minimum number of edges in an intersecting $r$-uniform hypergraph. It was known that $q(3)=6$ and $q(4)=9$. We obtain the following new results: The extremal example for uniformity 4 is unique. Somewhat surprisingly it is not symmetric by any means. For uniformity 5, $q(5)=13$, and we found 3 examples, none of them being some known graph. We use both theoretical arguments and computer searches. In the footsteps of Erdős and Lovasz, we also consider the special case, when the hypergraph is part of a finite projective plane. We determine the exact answer for $r\in \{3,4,5,6\}$. For uniformity 6, there is a unique extremal example. In a related question, we try to find $2$-intersecting $r$-uniform hypergraphs with maximal covering number, that is $\tau(H)=r-1$. An infinite family of examples is to take all possible $r$-sets of a $(2r-2)$-vertex set. There is also a geometric candidate: biplanes. These are symmetric 2-designs with $\lambda=2$. We determined that only 3 biplanes of the 18 known examples are extremal.

中文翻译:

具有最大覆盖数的相交和 2-相交超图:重新审视 Erdős-Lovász 主题

Erdős 和 Lovasz 注意到具有最大覆盖数的 $r$-均匀相交超图 $H$,即 $\tau(H)=r$,必须至少有 $\frac{8}{3}r-3$边缘。45 年来,这个下限没有任何改善。我们试图通过研究一些小案例来理解其中的原因,看看真相是否非常接近这个简单的界限。让 $q(r)$ 表示相交的 $r$-uniform 超图中的最小边数。已知 $q(3)=6$ 和 $q(4)=9$。我们获得了以下新结果: 均匀性 4 的极值示例是唯一的。有点令人惊讶的是,它无论如何都不是对称的。对于均匀性 5,$q(5)=13$,我们找到了 3 个示例,其中没有一个是已知图。我们同时使用理论论证和计算机搜索。在 Erdős 和 Lovasz 的脚步中,我们也考虑了特殊情况,当超图是有限投影平面的一部分时。我们确定 $r\in \{3,4,5,6\}$ 的确切答案。对于均匀性 6,有一个独特的极值示例。在一个相关问题中,我们尝试找到具有最大覆盖数的 $2$-相交 $r$-均匀超图,即 $\tau(H)=r-1$。一个无限的例子是取所有可能的 $(2r-2)$-顶点集的 $r$-sets。还有一个几何候选:双翼飞机。这些是 $\lambda=2$ 的对称 2-设计。我们确定 18 个已知示例中只有 3 个双平面是极值的。一个无限的例子是取所有可能的 $(2r-2)$-顶点集的 $r$-sets。还有一个几何候选:双翼飞机。这些是 $\lambda=2$ 的对称 2-设计。我们确定 18 个已知示例中只有 3 个双平面是极值的。一个无限的例子是取所有可能的 $(2r-2)$-顶点集的 $r$-sets。还有一个几何候选:双翼飞机。这些是 $\lambda=2$ 的对称 2-设计。我们确定 18 个已知示例中只有 3 个双平面是极值的。
更新日期:2020-12-08
down
wechat
bug