当前位置: X-MOL 学术Urban Clim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluating radiant heat in an outdoor urban environment: Resolving spatial and temporal variations with two sensing platforms and data-driven simulation
Urban Climate ( IF 6.4 ) Pub Date : 2020-12-08 , DOI: 10.1016/j.uclim.2020.100745
Dorit Aviv , Hongshan Guo , Ariane Middel , Forrest Meggers

Instruments measuring the outdoor radiant environment are limited spatially. They aggregate observations to singular points, eliminating variations from surrounding surface temperatures. Computational methods can characterize the heterogeneous outdoor radiant environment, but spatial validation with accurate tools remains difficult. We use two novel sensing platforms (MaRTy and SMaRT) and an innovative computational validation method to explore Mean Radiant Temperature (MRT) spatial variation outdoors. MaRTy is a mobile instrument that evaluates MRT with directional weighting for hemispherical radiation flux density observations. The SMaRT sensor uses a non-contacting infrared surface temperature sensor and LIDAR to map surrounding surface temperatures. We conducted a case study combining the methodology of both instruments to improve spatial mapping of MRT for five locations on Temple University's main campus in Philadelphia, PA in July. For comparison, we collected thermal images to build a data-driven simulation model for MRT. Results demonstrate the improved resolution of combining both sensors to resolve variations in outdoor longwave radiation fluxes. The instruments show variations in surface temperatures up to 10 °C for SMaRT from longwave radiation and MRT variations of 40 °C for MaRTy, which included shortwave influences. These demonstrations of significant spatial variations were measured across an area typically evaluated at one position.



中文翻译:

评估室外城市环境中的辐射热:通过两个感应平台和数据驱动的模拟解决空间和时间变化

测量室外辐射环境的仪器在空间上受到限制。它们将观测值聚集到奇异点,从而消除了周围表面温度的变化。计算方法可以表征异质室外辐射环境,但是使用精确工具进行空间验证仍然很困难。我们使用两个新颖的传感平台(MaRTy和SMaRT)和一种创新的计算验证方法来探索室外的平均辐射温度(MRT)空间变化。MaRTy是一种移动仪器,可通过定向加权评估MRT,以观察半球辐射通量密度。SMaRT传感器使用非接触式红外表面温度传感器和LIDAR绘制周围表面温度。7月,我们进行了案例研究,结合了两种仪器的方法,以改善宾夕法尼亚州费城天普大学主校区五个地点的MRT空间地图。为了进行比较,我们收集了热图像,以建立数据驱动的MRT仿真模型。结果表明,结合使用两种传感器以解决室外长波辐射通量的变化,分辨率得到了提高。仪器显示长波辐射导致SMaRT的表面温度变化高达10°C,而MaRTy的MRT的表面温度变化高达40°C,其中包括短波影响。这些明显的空间变化的证明是在通常在一个位置评估的整个区域进行测量的。我们收集了热图像,以建立数据驱动的MRT仿真模型。结果表明,结合使用两种传感器以解决室外长波辐射通量的变化,分辨率得到了提高。仪器显示长波辐射导致SMaRT的表面温度变化高达10°C,而MaRTy的MRT的表面温度变化高达40°C,其中包括短波影响。这些明显的空间变化的证明是在通常在一个位置评估的整个区域进行测量的。我们收集了热图像,以建立数据驱动的MRT仿真模型。结果表明,结合使用两种传感器以解决室外长波辐射通量的变化,分辨率得到了提高。仪器显示长波辐射导致SMaRT的表面温度变化高达10°C,而MaRTy的MRT的表面温度变化高达40°C,其中包括短波影响。这些明显的空间变化的证明是在通常在一个位置评估的整个区域进行测量的。

更新日期:2020-12-08
down
wechat
bug