当前位置: X-MOL 学术Atmos. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical components and source identification of PM2.5 in non-heating season in Beijing: The influences of biomass burning and dust
Atmospheric Research ( IF 5.5 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.atmosres.2020.105412
Yanqin Ren , Jie Wei , Zhenhai Wu , Yuanyuan Ji , Fang Bi , Rui Gao , Xuezhong Wang , Gehui Wang , Hong Li

Abstract Biomass burning and dust storm have significant impacts on air pollution, aerosol properties and potential human health. In order to investigate the influences of them on the chemical component and sources of aerosols, PM2.5 are collected in spring and summer in Beijing. There are two special periods in the whole campaign. (1) Event I, from 16 to 18 April. Air quality is extremely poor during this period mainly affected by biomass burning. (2) Event II, from 4 to 5 May, the biggest dust storm happened on 4 May. In addition, we choose a relative clean period as (3) Event III, from 24 to 29 July, with the lowest PM2.5 levels (16–31 μg m−3) in the whole campaign. Contributions of NO3−, SO42−, and NH4+ to PM2.5 in Event I are 22.1%, 11.3%, and 8.3%, respectively, and decreased dramatically to 2.4%, 5.4%, and 0.9% in Event II, suggesting secondary aerosols are more significant in haze period. Both ratios of phytane & pristane and PAHs to OC in Event I and II are comparable, indicating contribution of local primary organic aerosols from fossil fuel combustions to PM2.5 are not significant differences between polluted and dust period. In contrast, ratio of levoglucosan to OC is much higher in Event I and ratio of trehalose to OC is much higher in Event II, suggesting the contribution of regional primary organic aerosols from biomass burning to PM2.5 is important during polluted period, while contribution of regional primary organic aerosols from dust to PM2.5 is significant in dust storm. Based on the organic markers, this work also estimates the source apportionment of PM2.5. Dust and biomass burning are the main contributors in polluted period, while vehicle and cooking are the main contributors in clean period.
更新日期:2021-04-01
down
wechat
bug