Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 5 ) Pub Date : 2020-12-07 , DOI: 10.1098/rsta.2020.0021
A. Casner 1
Affiliation  

Since the seminal paper of Nuckolls triggering the quest of inertial confinement fusion (ICF) with lasers, hydrodynamic instabilities have been recognized as one of the principal hurdles towards ignition. This remains true nowadays for both main approaches (indirect drive and direct drive), despite the advent of MJ scale lasers with tremendous technological capabilities. From a fundamental science perspective, these gigantic laser facilities enable also the possibility to create dense plasma flows evolving towards turbulence, being magnetized or not. We review the state of the art of nonlinear hydrodynamics and turbulent experiments, simulations and theory in ICF and high-energy-density plasmas and draw perspectives towards in-depth understanding and control of these fascinating phenomena. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.

中文翻译:

在惯性约束聚变和高能量密度实验中量化流体动力学不稳定性和湍流的最新进展

由于 Nuckolls 的开创性论文引发了对激光惯性约束聚变 (ICF) 的探索,流体动力学不稳定性已被认为是点火的主要障碍之一。尽管出现了具有巨大技术能力的 MJ 级激光器,但如今这两种主要方法(间接驱动和直接驱动)仍然如此。从基础科学的角度来看,这些巨大的激光设施还可以产生致密的等离子体流,无论是否被磁化,都可以演变为湍流。我们回顾了 ICF 和高能量密度等离子体中非线性流体动力学和湍流实验、模拟和理论的最新技术,并为深入理解和控制这些迷人现象提供了视角。
更新日期:2020-12-07
down
wechat
bug