当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue
Nature Chemistry ( IF 21.8 ) Pub Date : 2020-12-07 , DOI: 10.1038/s41557-020-00597-8
Marco Cammarata 1 , Serhane Zerdane 1 , Lodovico Balducci 1 , Giovanni Azzolina 1 , Sandra Mazerat 2 , Cecile Exertier 3 , Matilde Trabuco 3 , Matteo Levantino 4 , Roberto Alonso-Mori 5 , James M Glownia 5 , Sanghoon Song 5 , Laure Catala 2 , Talal Mallah 2 , Samir F Matar 6, 7 , Eric Collet 1
Affiliation  

Photoinduced charge-transfer is an important process in nature and technology and is responsible for the emergence of exotic functionalities, such as magnetic order for cyanide-bridged bimetallic coordination networks. Despite its broad interest and intensive developments in chemistry and material sciences, the atomic-scale description of the initial photoinduced process, which couples intermetallic charge-transfer and spin transition, has been debated for decades; it has been beyond reach due to its extreme speed. Here we study this process in a prototype cyanide-bridged CoFe system by femtosecond X-ray and optical absorption spectroscopies, enabling the disentanglement of ultrafast electronic and structural dynamics. Our results demonstrate that it is the spin transition that occurs first on the Co site within ~50 fs, and it is this that drives the subsequent Fe-to-Co charge-transfer within ~200 fs. This study represents a step towards understanding and controlling charge-transfer-based functions using light.



中文翻译:

CoFe普鲁士蓝类似物中超快自旋跃迁驱动的电荷转移

光致电荷转移是自然界和技术中的一个重要过程,是产生奇异功能的原因,例如氰化物桥接双金属配位网络的磁序。尽管它在化学和材料科学领域有着广泛的兴趣和深入的发展,但对结合金属间电荷转移和自旋跃迁的初始光诱导过程的原子级描述已经争论了几十年。由于其极快的速度,它已经遥不可及。在这里,我们通过飞秒 X 射线和光学吸收光谱在原型氰化物桥接 CoFe 系统中研究这一过程,从而能够解开超快电子和结构动力学的纠缠。我们的结果表明,在~50 fs 内首先发生在 Co 位点的是自旋跃迁,正是这一点在~200 fs 内驱动了随后的 Fe-to-Co 电荷转移。这项研究代表了使用光理解和控制基于电荷转移的功能的一步。

更新日期:2020-12-07
down
wechat
bug