当前位置: X-MOL 学术Glob. Planet. Change › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Response of summer extreme precipitation over East Asia during the mid-Holocene versus future global warming
Global and Planetary Change ( IF 3.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.gloplacha.2020.103398
Xin Ren , Yingying Sha , Zhengguo Shi , Xiaodong Liu

Abstract Changes in extreme precipitation have significant impacts on society and the environment. In recent years, the response of extreme precipitation over East Asia to global warming has received considerable attention; however, few studies have focused on the extreme precipitation in geological warm periods, especially the mid-Holocene—the most recent warm period on the orbital timescale. In this study, the outputs of mid-Holocene, pre-industrial and CO2-induced warming experiments using a coupled climate model (MPI-ESM-P) were employed to examine the changes in extreme precipitation over East Asia in the mid-Holocene and under future warming scenario, respectively. The results show that, during the mid-Holocene, summer extreme precipitation increases over the east of China but decreases over Japan and the surrounding oceans. However, under CO2-induced warming, summer extreme precipitation increases over the southeast of China, Japan, and the surrounding oceans, but decreases over the north of East Asia. Moisture budget analysis shows that these distinct responses come from different changes in moisture and circulation during the two periods. During the mid-Holocene, higher insolation over the Northern Hemisphere leads to a larger ocean–land thermal contrast and a stronger East Asian summer monsoon (EASM). The strengthened EASM brings more moisture to continental East Asia, resulting in an increase in both mean and extreme precipitation. In contrast, the CO2-induced warming facilitates an anomalous heating center in the upper troposphere over the tropical part of Northwestern Pacific ocean, which weakens the EASM. However, enhanced atmospheric moisture counterbalances the effect of the weakened EASM, resulting in more extreme precipitation over the south of East Asia.
更新日期:2021-02-01
down
wechat
bug