当前位置: X-MOL 学术Annu. Rev. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive-learning model predictive control for complex physiological systems: Automated insulin delivery in diabetes
Annual Reviews in Control ( IF 9.4 ) Pub Date : 2020-12-06 , DOI: 10.1016/j.arcontrol.2020.10.004
Mohammad Reza Askari , Iman Hajizadeh , Mudassir Rashid , Nicole Hobbs , Victor M. Zavala , Ali Cinar

An adaptive-learning model predictive control (AL-MPC) framework is proposed for incorporating disturbance prediction, model uncertainty quantification, pattern learning, and recursive subspace identification for use in controlling complex dynamic systems with periodically recurring large random disturbances. The AL-MPC integrates online learning from historical data to predict the future evolution of the model output over a specified horizon and proactively mitigate significant disturbances. This goal is accomplished using dynamic regularized latent variable regression (DrLVR) approach to quantify disturbances from the past data and forecast their future progression time series. An enveloped path for the future behavior of the model output is extracted to further enhance the robustness of the closed-loop system. The controller set-point, penalty weights of the objective function, and constraints criteria can be modified in advance for the expected periods of the disturbance effects. The proposed AL-MPC is used to regulate glucose concentration in people with Type 1 diabetes by an automated insulin delivery system. Simulation results demonstrate the effectiveness of the proposed technique by improving the performance indices of the closed-loop system. The MPC algorithm integrated with DrLVR disturbance predictor has compared to MPC reinforced with dynamic principal component analysis linked with K-nearest neighbors and hyper-spherical clustering (k-means) technique. The simulation results illustrate that the AL-MPC can regulate the glucose concentrations of people with Type 1 diabetes to stay in the desired range (70–180) mg/dL 84.4% of the time without causing any hypoglycemia and hyperglycemia events.



中文翻译:

复杂生理系统的自适应学习模型预测控制:糖尿病患者的自动胰岛素输送

提出了一种自适应学习模型预测控制(AL-MPC)框架,该框架结合了干扰预测,模型不确定性量化,模式学习和递归子空间识别,可用于控制具有周期性重复出现的大随机干扰的复杂动态系统。AL-MPC集成了来自历史数据的在线学习功能,以预测模型输出在指定范围内的未来发展,并主动缓解重大干扰。使用动态正则化潜在变量回归(DrLVR)方法来量化过去数据中的干扰并预测其未来发展时间序列,从而实现了这一目标。提取了模型输出的未来行为的包络路径,以进一步增强闭环系统的鲁棒性。控制器设定点 对于干扰效应的预期时间段,可以预先修改目标函数的权重和约束条件。拟议的AL-MPC通过自动胰岛素输送系统用于调节1型糖尿病患者的葡萄糖浓度。仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术链接的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)对于干扰效应的预期时间段,可以预先修改约束条件。拟议的AL-MPC通过自动胰岛素输送系统用于调节1型糖尿病患者的葡萄糖浓度。仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术链接的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)对于干扰效应的预期时间段,可以提前修改约束条件。拟议的AL-MPC通过自动胰岛素输送系统用于调节1型糖尿病患者的葡萄糖浓度。仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术链接的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)拟议的AL-MPC通过自动胰岛素输送系统用于调节1型糖尿病患者的葡萄糖浓度。仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术关联的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)拟议的AL-MPC通过自动胰岛素输送系统用于调节1型糖尿病患者的葡萄糖浓度。仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术链接的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术链接的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)仿真结果通过改进闭环系统的性能指标证明了该技术的有效性。与DrLVR干扰预测器集成的MPC算法与通过动态主成分分析与K近邻和超球面聚类(k-means)技术链接的MPC进行了比较。模拟结果表明,AL-MPC可以调节1型糖尿病患者的血糖浓度,使其保持在所需范围内(70-180)mg / dL的时间为84.4%,而不会引起任何低血糖和高血糖事件。

更新日期:2020-12-16
down
wechat
bug